

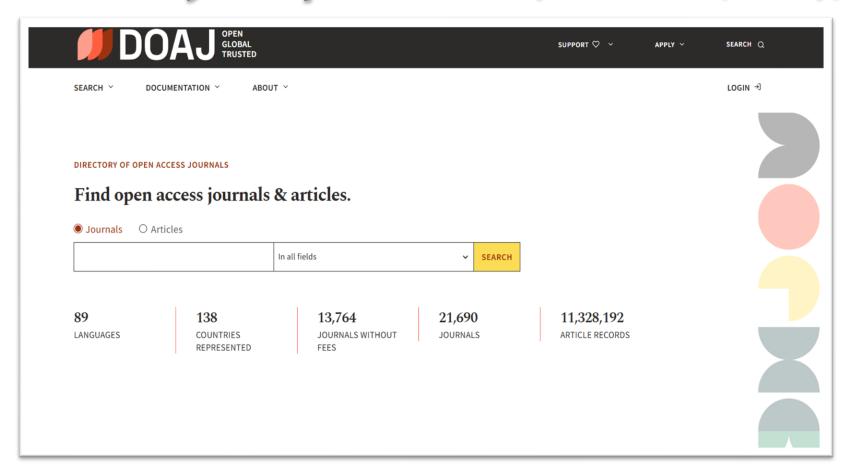
National Institute of Technology, Tiruchirappalli

Workshop on How to Access NIT Trichy Digital Resources

Central Library, NIT Tiruchirappalli 09.07.2025

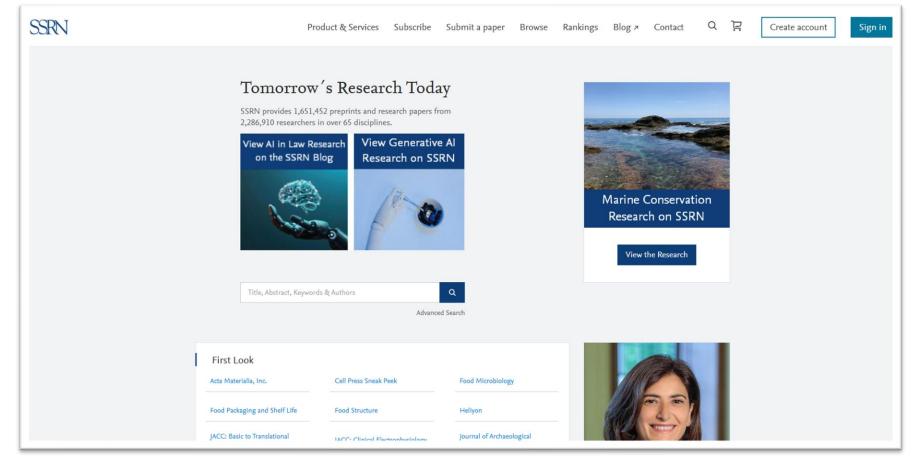
Introduction to Open Access Resources and Research Support Tools

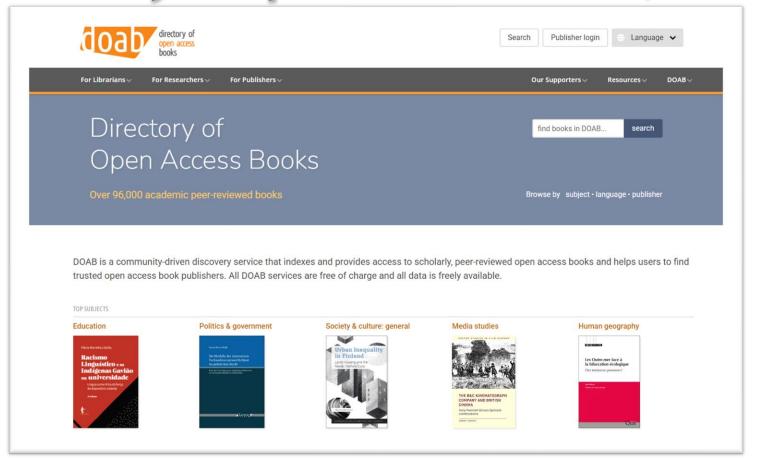
Shri Rudra Ranjan
Deputy Librarian
Central Library, NIT Tiruchirappalli


Open Access Resources

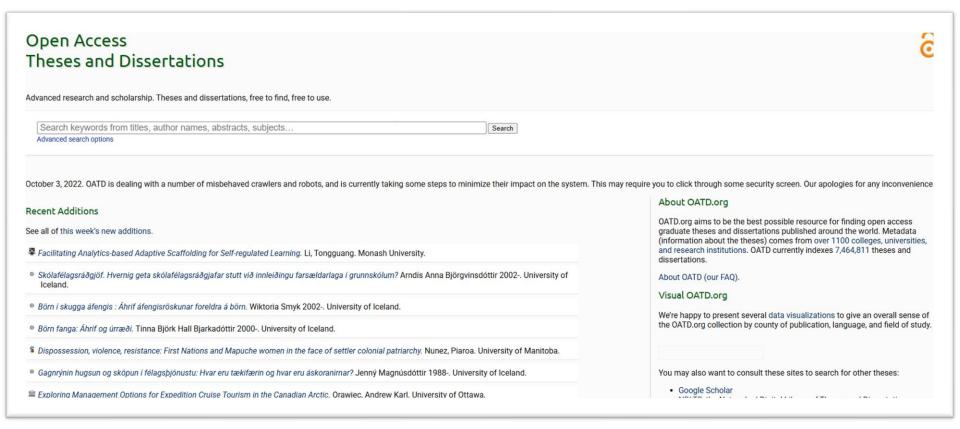
Туре	Example Platform(s)	URL
	PLOS ONE	https://journals.plos.org/plosone
Open Access Journals	Directory of Open Access Journals (DOAJ)	https://www.doaj.org
	arXiv	https://arxiv.org
	SSRN (engineering economics, policy)	https://www.ssrn.com
Open Access Repositories	HAL (multidisciplinary including engineering)	https://hal.archives-ouvertes.fr
	TechRxiv	https://www.techrxiv.org
	Directory of Open Access Books (DOAB)	https://www.doabooks.org
Open Access Books	OAPEN	https://www.oapen.org
	OpenStax	https://openstax.org
Open Educational Resources	MIT OpenCourseWare	https://ocw.mit.edu
	e-PG Pathshala (UGC, India)	https://epgp.inflibnet.ac.in
open Educational Resources	SWAYAM (Govt. of India MOOCs)	https://swayam.gov.in
	NROER (National Repository of OER)	https://nroer.gov.in

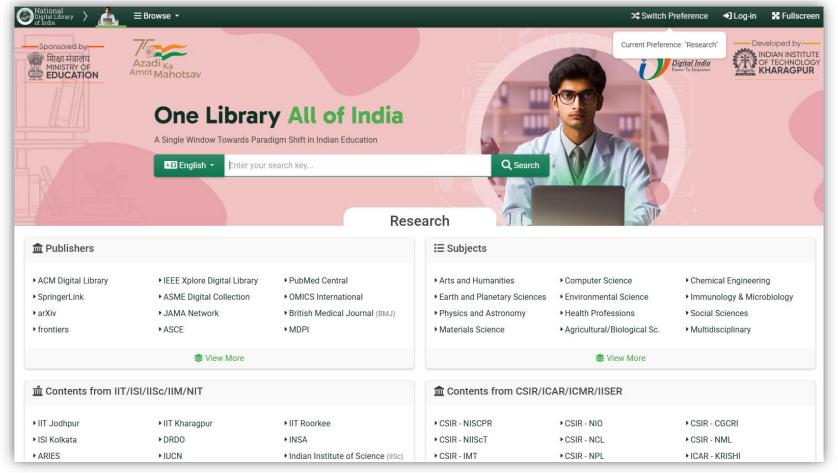
Туре	Example Platform(s)	URL
	Dryad	https://datadryad.org
Open Data Repositories	Figshare	https://figshare.com
	Zenodo	https://zenodo.org
On on Courseyvers	MIT OpenCourseWare	https://ocw.mit.edu
Open Courseware	Coursera (free courses)	https://www.coursera.org
Open Theses & Dissertations	Shodhganga (India)	https://shodhganga.inflibnet.ac.in
	OATD (Open Access Theses and Dissertations)	https://oatd.org
	NDLTD	https://www.ndltd.org
	bioRxiv	https://www.biorxiv.org
Preprint Servers	medRxiv	https://www.medrxiv.org
	TechRxiv (Engineering-focused)	https://www.techrxiv.org


Directory of Open Access Journals (DOAJ)



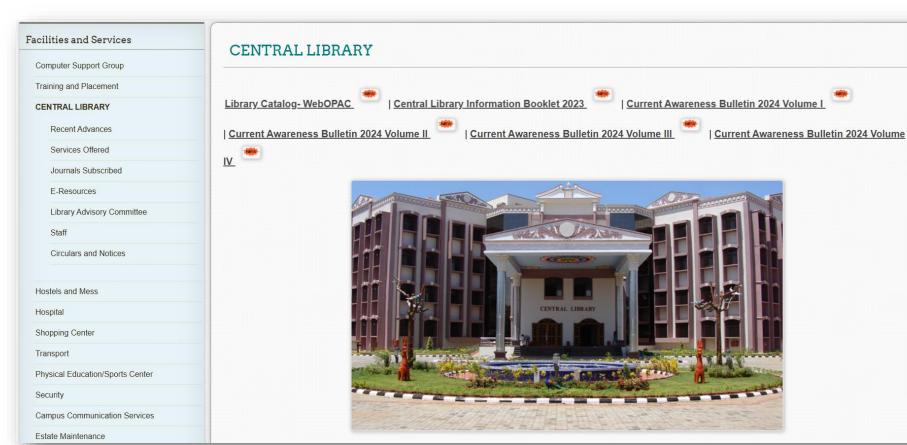
Latest preprints Understanding and Designing Deep Neural Networks Through Theory-Guided Training Karthika Nasir, Aradhana Reva, Jai Sekhar DOI: https://doi.org/10.31224/4790 Deep Neural Networks Theory-Guided Training Optimization Theory Neural Tangent Kernel Implicit Bias Information Theory Generalization Robustness Interpretability Downloads: 0 - Submitted 2025-07-06 - Posted 2025-07-07 PDF Quantitative Correlation Between Empirical Magnetic Anisotropy Energy and Superconducting	AION 1	•
Latest preprints Understanding and Designing Deep Neural Networks Through Theory-Guided Training Karthika Nasir, Aradhana Reva, Jal Sekhar DOI: https://doi.org/10.31224/4790 Deep Neural Networks Theory-Guided Training Optimization Theory Neural Tangent Kernel Implicit Bias Information Theory Generalization Robustness Interpretability Downloads: 0 - Submitted 2025-07-06 - Posted 2025-07-07	AION 1	•
Latest preprints Understanding and Designing Deep Neural Networks Through Theory-Guided Training Karthika Nasir, Aradhana Reva, Jai Sekhar DOI: https://doi.org/10.31224/4790 Deep Neural Networks Theory-Guided Training Optimization Theory Neural Tangent Kernel Implicit Bias Information Theory Generalization Robustness Interpretability Downloads: 0 - Submitted 2025-07-06 - Posted 2025-07-07	#55 1:0 #55 1:0	
Understanding and Designing Deep Neural Networks Through Theory-Guided Training Karthika Nasir, Aradhana Reva, Jai Sekhar DOI: https://doi.org/10.31224/4790 Deep Neural Networks Theory-Guided Training Optimization Theory Neural Tangent Kernel Implicit Bias Information Theory Generalization Robustness Interpretability Downloads: 0 - Submitted 2025-07-06 - Posted 2025-07-07	155 ko	
Understanding and Designing Deep Neural Networks Through Theory-Guided Training Karthika Nasir, Aradhana Reva, Jai Sekhar DOI: https://doi.org/10.31224/4790 Deep Neural Networks	Latest preprints	
Karthika Nasir. Aradhana Reva, Jai Sekhar DOI: https://doi.org/10.31224/4790 Deep Neural Networks		
Deep Neural Networks Theory-Guided Training Optimization Theory Neural Tangent Kernel Implicit Bias Information Theory Generalization Robustness Interpretability Downloads: 0 - Submitted 2025-07-06 - Posted 2025-07-07		
Implicit Bias Information Theory Generalization Robustness Interpretability Downloads: 0 - Submitted 2025-07-06 - Posted 2025-07-07	DOI: https://doi.org/10.31224/4790	
□ PDF		
	Downloads: 0 - Submitted 2025-07-06 - Posted 2025-07-07	
Quantitative Correlation Between Empirical Magnetic Anisotropy Energy and Superconducting	□ PDF	
Quantitative Correlation Between Empirical Magnetic Anisotropy Energy and Superconducting		
Quantitative Correlation Between Empirical Magnetic Anisotropy Energy and Superconducting		
Properties in NbScTiZr: A Statistical Validation	Quantitative Correlation Between Empirical Magnetic Anisotropy Energy and Superconducting	
Sudhakar Geruganti		


SSRN (engineering economics, policy)


Directory of Open Access Books (DOAB)

OATD (Open Access Theses and Dissertations)

National Digital Library of India (NDLI)


How to access Library Resources/Services

Library Website

https://www.nitt.edu/home/students/
facilitiesnservices/library/

Library Website

E- Resources

Facilities and Services E-Resources Computer Support Group Training and Placement **Important Resources** CENTRAL LIBRARY Recent Advances Al Tools for Researchers Services Offered Journals Subscribed **Preprint repositories** E-Resources Library Advisory Committee **Open Access Resources** Staff **Journal Finder tools** Circulars and Notices Hostels and Mess e-Resource Access and Copyright Rules Hospital **Shopping Center** Remote Access To E-Resources Through INFED: Click Here Transport Access E-Resources from remote through INFED/Shibboleth. You have to login with your OCTA username (Usually your roll number/ webmail username without "@nitt.edu") and password. Remember, OCTA password is Physical Education/Sports Center not the same as your webmail password. If you have forgotten your OCTA password, please contact the Computer Support Group (CSG) over email (csgmaint@nitt.edu)

How to search the Database

Effective Techniques for Phrase Searching in Databases

Learn how to utilize phrase searching for more accurate database results

Use quotation marks for exact phrases.

Search for words together in order.

Example: "climate change" search.

Find documents with this exact phrase.

Without quotes, words can be anywhere.

Resulting in broader search results.

Understanding Boolean Operators in Search Techniques

Master the use of logical connectors for effective database searching

Use of AND

AND is a logical operator that combines search terms; results must contain all included keywords for relevance. This is essential for narrowing down searches and improving accuracy.

Use of OR

OR expands your search by including results that contain any of the specified keywords. This is useful for broadening results when researching related topics.

Use of NOT

The **NOT** operator excludes specific keywords from your search. This helps refine results by eliminating unwanted information that may not pertain to your research topic.

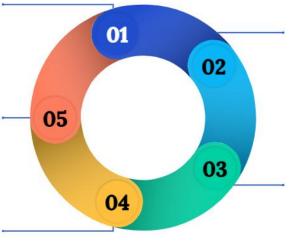
Default AND

When no operator is specified, **AND** is usually assumed between terms. This default setting emphasizes the importance of including multiple relevant keywords for precise searches.

Utilizing Truncation and Wildcards in Database Searches

Master advanced searching techniques for effective research in databases

Understanding truncation


Truncation allows for searching multiple word endings efficiently.

Check database help guides

Different databases may use unique wildcard symbols; consult help guides.

Single character wildcards

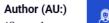
Use ? or # to replace a single character in searches.

Role of wildcards in searches

Wildcards help in finding variations of a term during searches.

Common wildcard symbols

The **asterisk** replaces zero or more characters in searches.


Effective Field Searching Techniques

Learn to search specific fields in research databases effectively

Field Tags

Title (TI:)

Search for keywords in the title of articles.

Look for articles by specific authors.

Find articles containing keywords in abstracts.

Journal (SO:)

Search articles from specific journals.

Keywords (KW:)

Use keywords to refine your search results.

Search Examples

TI:"machine learning"

Find articles with 'machine learning' in the title.

AU:"John Doe"

Search for works authored by John Doe.

AB:"data analysis"

Locate articles discussing data analysis in abstracts.

SO: "Science Journal"

Look for publications in Science Journal.

KW:"artificial intelligence"

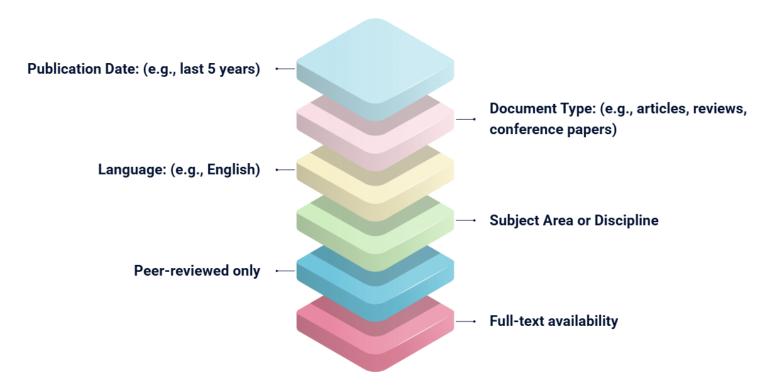
Search articles with artificial intelligence as a keyword.

Proximity Searching in Databases

Definition of Proximity Searching

Proximity searching finds words that are located close to each other within a text. This technique allows researchers to discover related terms that may not form an exact phrase, enhancing search results.

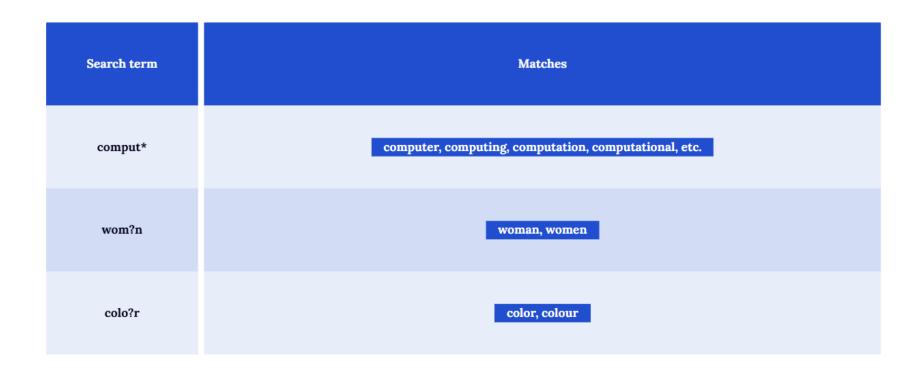
Database Operators Used


Different databases employ specific **operators** for proximity searching, such as NEAR, WITHIN, and ADJ. Familiarity with these operators is crucial for effective searches in various databases.

Example of Proximity Search

An example of a proximity search is using **climate NEAR/3 policy**, which retrieves instances of 'climate' appearing within three words of 'policy' in any arrangement, broadening the search scope.

Types of Filters


Understanding Search Operators and Their Functions

Learn how to effectively narrow or broaden your research results using operators

Operator	Function	Example	Result
AND	Narrows search; all terms must appear	climate AND policy	Articles containing both "climate" and "policy"
OR	Broadens search; any term can appear	policy OR legislation	Articles containing either "policy" or "legislation" (or both)
NOT	Excludes terms	climate NOT "economic impact"	Articles about climate that do not mention economic impact

Understanding Wildcard Search Terms in Research

Learn how to enhance your search techniques effectively

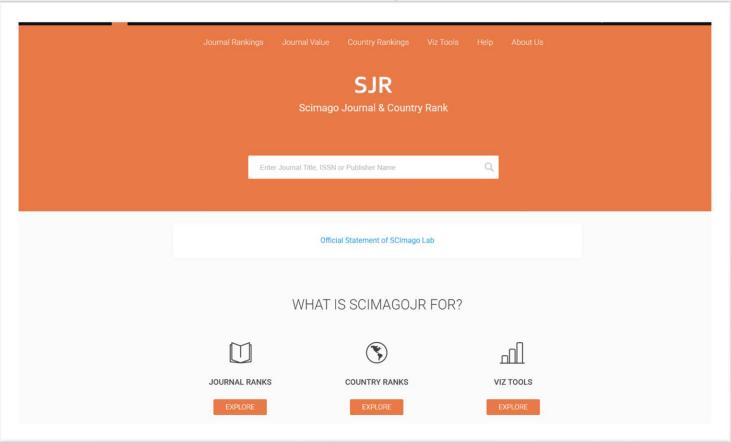
Research Support Tools

Journal Finders

Literature Search Tool 03

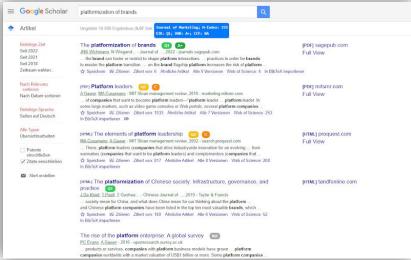
Writing Tool

Plagiarism Check Electronic
Theses &
Dissertations


Reference Management

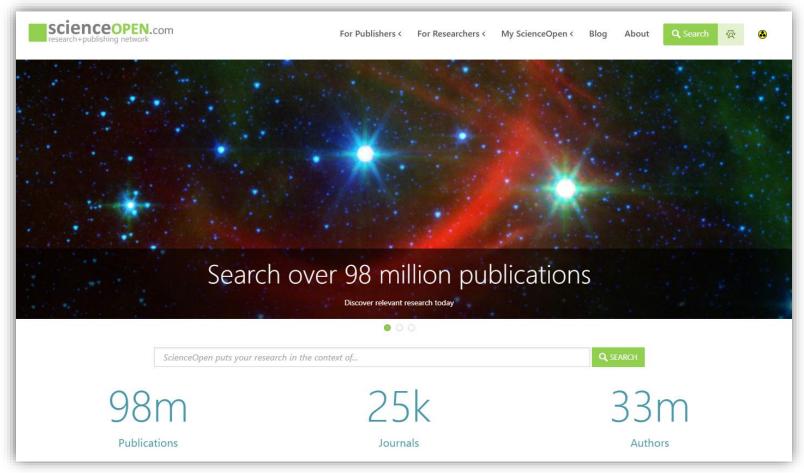
06

Journal Finder tools

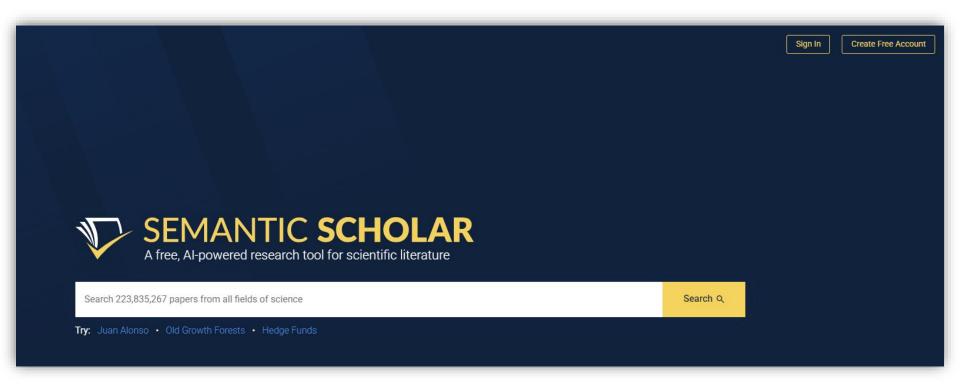

Tool Name	Website	Description
Elsevier Journal Finder	https://journalfinder.elsevier.com/	Suggests Elsevier journals based on manuscript title and abstract.
Springer Journal Suggester	https://journalsuggester.springer.com/	Recommends Springer journals using manuscript text.
Wiley Journal Finder	https://journalfinder.wiley.com/	Finds Wiley journals that match your manuscript.
Edanz Journal Selector	https://www.edanz.com/journal-selector	Selects journals from multiple publishers.
JANE (Journal/Author Name Estimator)	https://jane.biosemantics.org/	Matches manuscript with journals, authors, and articles.
Researcher.Life Journal Finder	https://researcher.life/tools/journal- finder	Finds journals from multiple publishers by manuscript details.
JournalGuide	https://www.journalguide.com/	Search thousands of journals by subject and metrics.
ScienceWise Journal Finder	https://sciencewise.info/journal-finder	Recommends journals based on manuscript info.

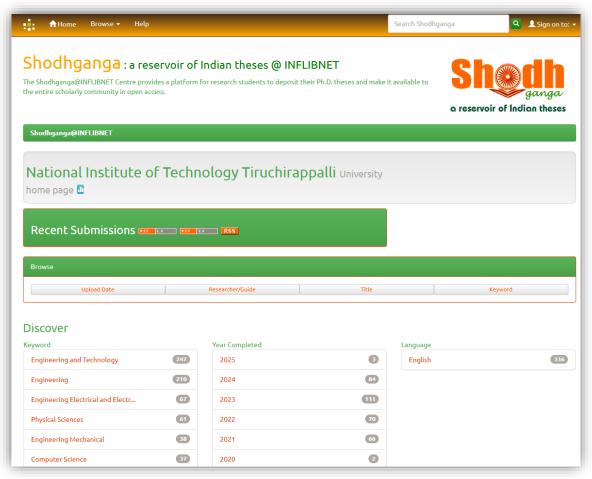
Scimago

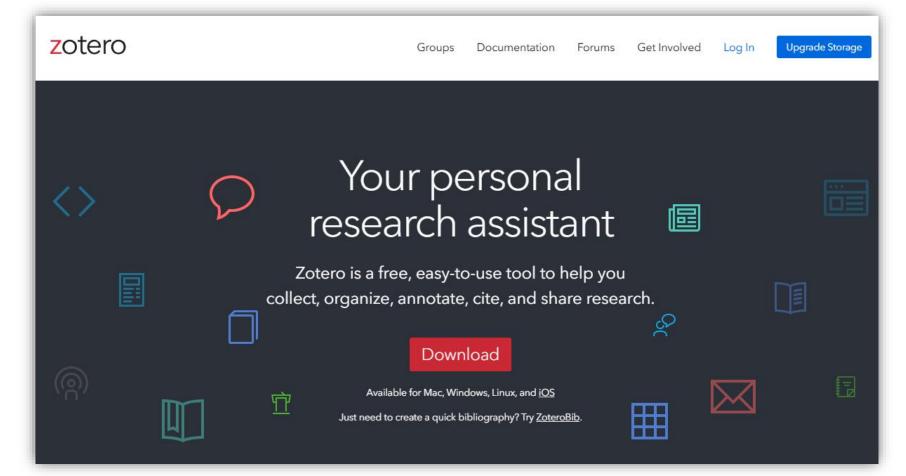
Journal Finder - Rapid Journal Quality Check

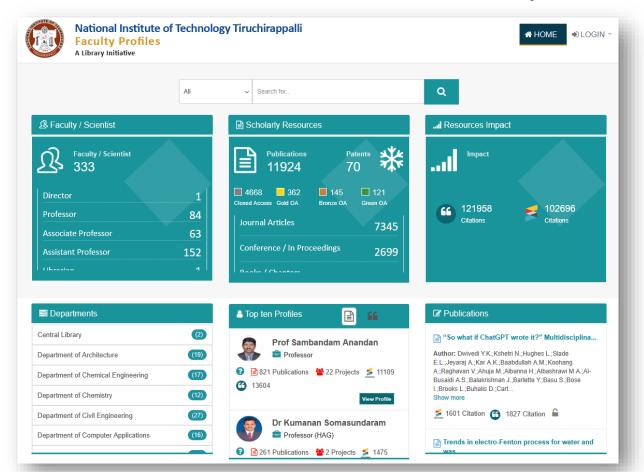


Journal Finder - ExCITATION

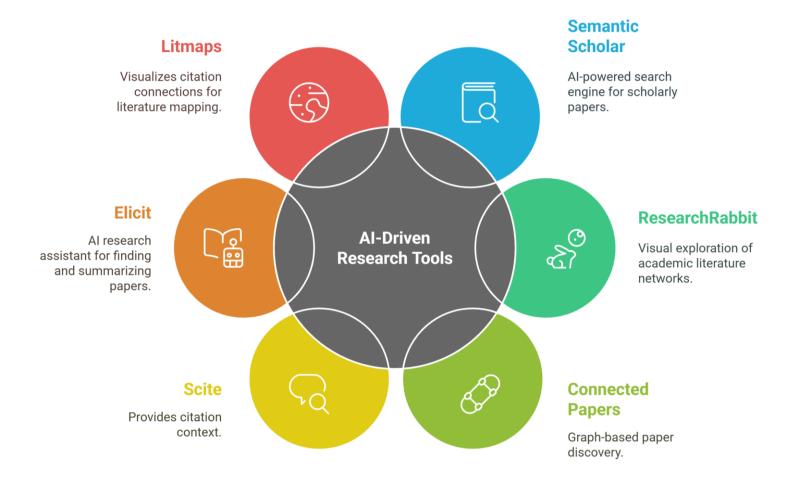



Scholarly Open Access Resource - ScienceOpen


Scholarly Open Access Search Engine – Semantic Scholar


Electronic Theses & Dissertations Repository - Shodhganga

Zotero – Reference Management Software



Indian Research Information Network System (IRINS)

Al Tools for Research

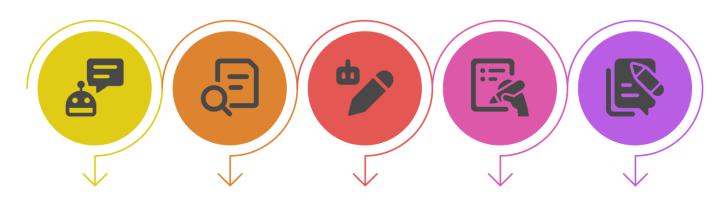
AI-Driven Research Tools

Al Tools for Research Process Idea Generation & Hypothesis Building

Elicit

Helps build research questions and generate hypotheses.

Consensus


Al answers research questions by pulling data from academic studies.

Scispace Copilot

Explains paper sections and generates summaries or key insights.

AI Tools Writing & Summarization

ChatGPT

Assists with writing, summarizing, translating, coding, and brainstorming.

SciSpace

Al tools for reading and understanding research papers.

Jenni.ai

Al writing assistant for academic writing.

PaperPal

Academic writing and grammar checking tool.

Trinka Al

Grammar and style checker tailored for technical and academic writing.

Reference Management Tool

Zotero

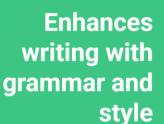
Free tool for research collection and citation.

Mendeley

Reference manager with academic social networking.

EndNote

Citation
management
for medical and
scientific
research.



Paperpile

Reference manager integrated with Google Docs.

AI-Powered Plagiarism Detection & Writing Quality Check

suggestions.

Turnitin

Detects plagiarism ensuring academic integrity.

Tools for Presentation

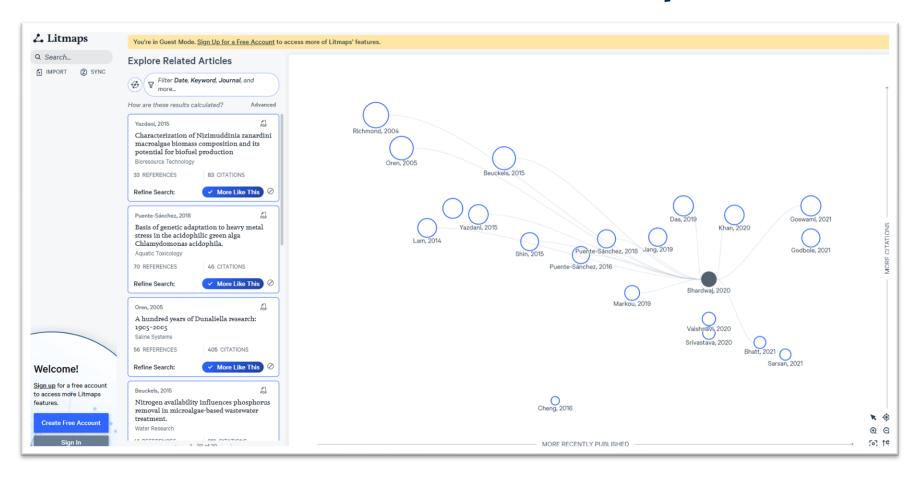
Gamma.app

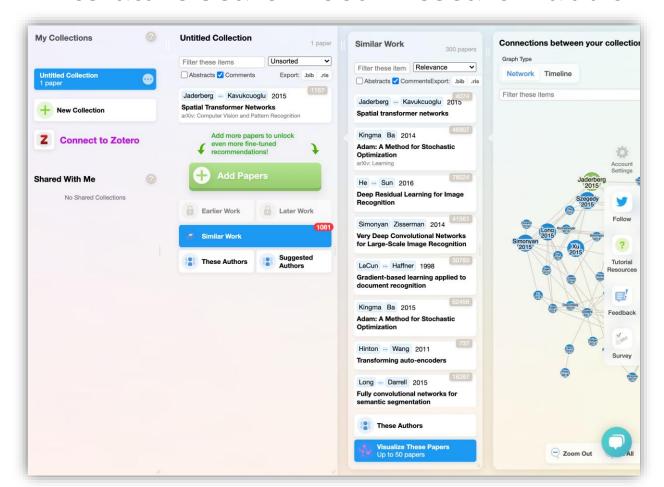
Al tool to generate slide decks.

Pitch.com

Website for creating presentations online.

Slidesgo


Platform offering presentation templates and designs.


Canva

Versatile
design
platform
with
presentation
features.

Literature Search Tool – Litmaps

Literature Search Tool – Research Rabbit

Thank you for listening