ENTREPRENEURSHIP DEVELOPMENT (Common for CSE, DBS, SE)

Er.-Entrepreneurship-Enterprise: Conceptual issues - Entrepreneurship vs. Management - Roles and functions of Er in relation to the enterprise and in relation to the economy - Entrepreneurship is an interactive process between the individual and the environment - Small business as seedbed of Entrepreneurship - Entrepreneur competencies - Entrepreneur motivation - performance and rewards.

- The teachers should emphasize to students the desirability as well as feasibility of a career in Entrepreneurship in the Indian scenario.

- The teachers may make use of Entrepreneurship Development Institute of India's Inventory of Entrepreneur Competencies and National Institute of Entrepreneurship, Developments training kit for arousing Entrepreneur motivation and capacity and capability building.

Opportunity scouting and idea generation: role of creativity and innovation and business research - Sources of business ideas - Entrepreneur opportunities in contemporary business environment, for example opportunities in net-work marketing, franchising, business process outsourcing in the early 21 century.

- The students may be advised to visit various product/service franchises, BPO concerns and meet up/down links in the net-work marketing.

Launching of Micro, Small and Medium Enterprises (MSMEs): Decision to be self employed-Selection of product and process technology – Location of Enterprise- Forms of Business organization- Preparation of Project Report- Registration/ Statutory Licenses-Clearances

- The students may be advised to develop a structured instrument [questionnaire] for conducting surveys of the various aspects of entrepreneur/enterprise. They may also be advised to prepare a comprehensive business plan. The desirability and feasibility of liaison with relevant funding and non-funding agencies may also be explored.

REFERENCES:

5. Taneja, Gupta, Entrepreneur Development New Venture Creation.; 2nd ed. Galgotia Publishing Company
Course objectives:
To introduce the student to various Image processing and Pattern recognition techniques.
- To study the Image fundamentals.
- To study the mathematical morphology necessary for Image processing and Image segmentation.
- To study the Image Representation and description and feature extraction.
- To study the principles of Pattern Recognition.
- To know the various applications of Image processing.

INTRODUCTION

MATHEMATICAL MORPHOLOGY AND IMAGE SEGMENTATION

IMAGE REPRESENTATION, DESCRIPTION AND FEATURE EXTRACTION.

PATTERN RECOGNITION

APPLICATIONS:

REFERENCES:

DATA WAREHOUSING AND MINING (Common to CSE & DBS)

This course will provide the core concepts of data mining, its techniques, implementation, benefits, and outcome expectations from this new technology. It will also identify industry branches which most benefit from Data warehousing and data mining. The course will also focus on business solutions and the advanced applications of Data mining.

INTRODUCTION: Fundamentals of data mining - Data Mining Functionalities - Classification of Data Mining systems - Data Mining Task Primitives, Integration of a Data Mining System with a Database or a Data Warehouse System, Major issues in Data Mining. Data Preprocessing: Need for Preprocessing the Data, Data Cleaning, Data Integration and Transformation, Data Reduction, Discretization and Concept Hierarchy Generation.

DATA WAREHOUSE AND OLAP TECHNOLOGY FOR DATA MINING: Data Warehouse, Multidimensional Data Model, Data Warehouse Architecture, Data Warehouse Implementation, Further Development of Data Cube Technology, From Data Warehousing to Data Mining Data Cube Computation and Data Generalization: Efficient Methods for Data Cube Computation, Further Development of Data Cube and OLAP Technology, Attribute-Oriented Induction.

MINING FREQUENT PATTERNS, ASSOCIATIONS AND CORRELATIONS: Basic Concepts, Efficient and Scalable Frequent Item set Mining Methods, Mining various kinds of Association Rules, From Association Mining to Correlation Analysis, Constraint-Based Association Mining, Classification and Prediction: Issues Regarding Classification and Prediction, Classification by Decision Tree Induction, Bayesian Classification, Rule-Based Classification, Classification by Back propagation, Support Vector Machines, Associative Classification, Lazy Learners, Other Classification Methods, Prediction, Accuracy and Error measures, Evaluating the accuracy of a Classifier or a Predictor, Ensemble Methods

CLUSTER ANALYSIS INTRODUCTION: Types of Data in Cluster Analysis, A Categorization of Major Clustering Methods, Partitioning Methods, Hierarchical Methods, Density-Based Methods, Grid-Based Methods, Model-Based Clustering Methods, Clustering High-Dimensional Data, Constraint-Based Cluster Analysis, Outlier Analysis.

ADVANCED DATA MINING: Web mining – Text Mining – Spatial and Temporal Mining - Applications and Trends in Data Mining: Data Mining Applications, Data Mining System Products and Research Prototypes, Additional Themes on Data Mining and Social Impacts of Data Mining – Case studies.

LAB COMPONENTS (Only for DBS)
The students are expected to implement assigned lab exercises.

1. For a given set of data, perform and implement the appropriate pre-processing.
2. Implement the Apriori and Frequent Pattern Tree mining algorithm to identify the interesting pattern from the given data set.
3. Implement (i) Bayesian (ii) K-nearest Neighbour (iii) Decision tree based method and analyze the result using any one of the performance measure.
4. Implement (i) K-means (ii) Hierarchical algorithm for a given data set
5. Identify the application and Implement using the suitable techniques.

REFERENCES

2. Pang-Ning Tan, Michael Steinbach and Vipin Kumar, –Introduction to Data Mining‖, Pearson education.
BIG DATA ANALYTICS (Common to CSE & DBS)

Course Objectives:
- To understand big data analytics as the next wave for businesses looking for competitive advantage
- To understand the financial value of big data analytics
- To explore tools and practices for working with big data
- To understand how big data analytics can leverage into a key component
- To understand how to mine the data
- To learn about stream computing
- To know about the research that requires the integration of large amounts of data

INTRODUCTION TO BIG DATA

DATA ANALYSIS

STREAM COMPUTING

PREDICTIVE ANALYTICS AND VISUALIZATION

FRAMEWORKS AND APPLICATIONS

LAB COMPONENTS (Only for DBS)
The students are expected to implement assigned lab exercises.
• Work with big data platform and its analysis techniques.
• Analyze the big data for useful business applications.
• Select visualization techniques and tools to analyze big data
• Implement search methods and visualization techniques
• Design efficient algorithms for mining the data from large volumes.
• Explore the technologies associated with big data analytics such as NoSQL, Hadoop and MapReduce

REFERENCES:
ADVANCED OPERATING SYSTEMS (Only for CSE)

Course objectives: To study the advanced concepts of Operating Systems, Distributed Systems, multiprocessor, real-time, database and mobile operating systems.

INTRODUCTION: Functions of operating systems, Design approaches: layered, kernel based and virtual machine approach, why advanced operating systems, types of advanced operating systems.

DISTRIBUTED OPERATING SYSTEMS: Architecture of distributed operating systems, system architecture types, issues in distributed operating systems, inherent limitation of distribute systems, distributed mutual exclusion: classification of mutual exclusion algorithms, Lamport’s token based algorithm, Suzuki-Kasami’s Broadcast algorithm, Raymond’s Tree based algorithm, Distributed deadlock detection, Distributed file systems, Distributed shared memory, Distributed scheduling.

MULTIPROCESSOR OPERATING SYSTEMS: Introduction, structure of multiprocessor operating system, operating system design issues, threads, the test and set instruction, the swap instruction, implementation of the process wait, processor scheduling, reliability and fault tolerance.

REAL TIME OPERATING SYSTEM: Introduction to Real time systems and Real Time Operating Systems, Characteristics of Real Time operating Systems, Classification of Real Time Operating Systems, Services, structure, goal and feature of RTOS, architecture of RTOS, micro kernels and monolithic kernels, tasks in RTOS, Performance measures, estimating program runtimes, task assignment, scheduling in RTOS, rate monotonic scheduling, priority inversion, task management, inter task communication, applications of various RTOS.

DATA BASE OPERATING SYSTEMS: Introduction to database operating systems, concurrency control: theoretical aspect, distributed database system, concurrency control algorithms.

MOBILE OPERATING SYSTEM: Symbian O.S.: introduction, kernel design in Symbian OS, scheduling in Symbian OS, File systems on mobile phones, I/O in Symbian OS, Application development using Android, Introduction to cloud OS.

LAB COMPONENTS: (Only for CSE)
The students are expected to implement assigned lab exercises. They are also expected to carry out one or two case studies.

1. Implementation of Process scheduling algorithms.
2. Simulation of Deadlock detection, prevention and recovery process.
4. Implementation of Distributed OS Agreement protocols.
5. Implementation of Distributed OS Resource Scheduling algorithms
6. Two-Phase Commit Protocol in Distributed OS.
7. CASE STUDY: Linux on ARM (OS for embedded systems)
8. CASE STUDY: Development of a reasonably sized dynamically loadable kernel module for Linux kernel
9. CASE STUDY: Study educational operating systems such as Minix (http://www.minix3.org/) and Weenix (http://weenix.cs.brown.edu/mediawiki/index.php/Weenix) and develop reasonably sized interesting modules for them
10. CASE STUDY: Study the Android open source operating system for mobile devices (http://source.android.com/) and develop / modify some modules.
11. CASE STUDY: Study any embedded and real-time operating system such as eCos (http://ecos.sourceware.org/) and develop / modify some modules.

REFERENCES:
4. Real Time Operating System, Barr M.
5. Real-Time Systems, Jane Liu, Pearson Ed. Asia
7. Smart phone operating system concepts with Symbian O.S. A tutorial guide by Michael J. Jipping. Symbian Press, Wiley.
ADVANCED DATABASES
(Only for CSE)

Course objectives:

- To learn the modeling and design of databases.
- To acquire knowledge on parallel and distributed databases and its applications.
- To study the usage and applications of Object Oriented database
- To understand the principles of intelligent databases.
- To understand the usage of advanced data models.
- To learn emerging databases such as XML, Cloud and Big Data.
- To acquire inquisitive attitude towards research topics in databases.

PARALLEL AND DISTRIBUTED DATABASES: Database System Architectures:
Centralized and Client-Server Architectures – Server System Architectures – Parallel Systems-
Distributed Systems – Parallel Databases: I/O Parallelism – Inter and Intra Query Parallelism –
Inter and Intra operation Parallelism – Design of Parallel Systems- Distributed Database
Concepts - Distributed Data Storage – Distributed Transactions – Commit Protocols –
Concurrency Control – Distributed Query Processing – Case Studies

OBJECT AND OBJECT RELATIONAL DATABASES: Concepts for Object Databases:
Object Identity – Object structure – Type Constructors – Encapsulation of Operations – Methods
– Persistence – Type and Class Hierarchies – Inheritance – Complex Objects – Object Database
Standards, Languages and Design: ODMG Model – ODL – OQL – Object Relational and
Extended – Relational Systems: Object Relational features in SQL/Oracle – Case Studies

INTELLIGENT DATABASES: Active Databases: Syntax and Semantics (Starburst, Oracle,
DB2)- Taxonomy- Applications- Design Principles for Active Rules- Temporal Databases:
Overview of Temporal Databases- TSQL2- Deductive Databases: Logic of Query Languages –
Datalog- Recursive Rules- Syntax and Semantics of Datalog Languages- Implementation of
Rules and Recursion- Recursive Queries in SQL- Spatial Databases- Spatial Data Types- Spatial
Relationships- Spatial Data Structures-Spatial Access Methods- Spatial DB Implementation.

ADVANCED DATA MODELS: Mobile Databases: Location and Handoff Management -
Effect of Mobility on Data Management - Location Dependent Data Distribution - Mobile
Transaction Models - Concurrency Control - Transaction Commit Protocols- Multimedia
Databases- Information Retrieval- Data Warehousing- Data Mining- Text Mining.

EMERGING TECHNOLOGIES: DynamoDB vs MongoDB NoSQL - XML Databases:
XML-Related Technologies-XML Schema- XML Query Languages- Storing XML in
Databases-XML and SQL- Native XML Databases- Web Databases- Geographic Information
Systems- Biological Data Management- Cloud Based Databases: Data Storage Systems on the
Cloud- Cloud Storage Architectures-Cloud Data Models- Query Languages- Introduction to Big
Data-Storage-Analysis.

LAB COMPONENTS (Only for CSE),

The students are expected to implement assigned lab exercises.
- Relational Databases: DDL, DML, Joins, Queries, Procedures and Functions, PL/SQL, Packages, Triggers
- ODBC connectivity
- Select the appropriate high performance database like parallel and distributed database
- Model and represent the real world data using object oriented database
- Design a semantic based database to meaningful data access
- Embed the rule set in the database to implement intelligent databases
- Represent the data using XML database for better interoperability
- Handle Big data and store in a transparent manner in the cloud
- To solve the issues related to the data storage and retrieval
- Other advanced database concepts

REFERENCES:
DATABASE ADMINISTRATION (Only for DBS)

Course Objectives: This subject will review the purpose and responsibilities of the Database Administrator. The student will learn how the DBMS manages the data and controls such as recovery, locking and transaction logging and performance tuning. Through hands on Database Administration using Oracle, the student will practice much of the theory presented.

DATABASE ADMINISTRATION: Creating database environment, Database design, application design, Design reviews.

DATABASE CHANGE MANAGEMENT: Data availability, performance management, system performance, database performance.

APPLICATION PERFORMANCE: Data integrity, database security, database backup and recovery, disaster planning

DATA AND STORAGE MANAGEMENT: Data movement and distribution, database connectivity, Meta data management

DBA TOOLS: DBA rules of thumb, DBA tool vendors, DBA web resources.

Case studies: Usage of DBA tools

REFERENCES
2. Understanding Database Administration, Pablo Berzukov.
Course Objectives: Information retrieval covers the tasks of indexing, searching, and recalling data, particularly text or other unstructured forms. It has an important role to play in a large number of applications viz., digital libraries, office automation, internet and e-commerce. The aim of the course is to study theoretical aspects as well as implementation issues of classical and modern retrieval problems.

EVALUATION OF INFORMATION REPRESENTATION AND RETRIEVAL - Information representation and retrieval overview, information representation basic approaches, information retrieval II (other topics). User dimension in information representation and retrieval.

LANGUAGE IN INFORMATION AND RETRIEVAL - Natural languages, controlled vocabulary, natural languages Vs controlled vocabulary, Language for IRR in the digital age.

RETRIEVAL TECHNIQUES AND QUERY REPRESENTATION – Retrieval representation, selection of retrieval techniques, query representation, retrieval of information unique in content or format.

RETRIEVAL APPROACHES- Retrieval by searching, retrieval by browsing, searching and browsing integrated in retrieval, Information retrieval models- Foundation of all IR Models, the Boolean logic model, vector space model, probability model, extensions of major IR models.

INFORMATION RETRIEVAL SYSTEMS – online systems, CD-ROM Systems, OPACS, internet retrieval systems.

REFERENCES

SOFTWARE TESTING AND QUALITY ASSURANCE
(Only for SE)

Course Objectives:

- To provide students with the knowledge, skill and in-depth technical understanding of the key concepts required to design and build dependable software systems.
- To achieve the gap between the theory and practice of software development and, in particular, through the transfer of knowledge from the classroom via research driven and commercially relevant project.

Software Metrics: Linguistic Metrics - Structural Metrics - Hybrid Metrics - Metrics Implementation

Reliability: reliability metrics, fault avoidance, Cleanroom software development, fault tolerance, exception handling, N-version programming, recovery blocks, formal methods, functional specifications, and Z notation.

LAB COMPONENTS: (Only for SE)
The students are expected to carry out one or two case studies.

CASE STUDY 1: Cause Effect Graph Testing for a Triangle Program
Perform cause effect graph testing to find a set of test cases for the following program specification: Write a program that takes three positive integers as input and determine if they represent three sides of a triangle, and if they do, indicate what type of triangle it is. To be more specific, it should read three integers and set a flag as follows:

- If they represent a scalene triangle, set it to 1.
- If they represent an isosceles triangle, set it to 2.
- If they represent an equilateral triangle, set it to 3.
- If they do not represent a triangle, set it to 4.

CASE STUDY 2: Boundary Value Analysis for a Software Unit
The following is a specification for a software unit. The unit computes the average of 25 floating point numbers that lie on or between bounding values which are positive values from 1.0 (lowest allowed boundary value) to 5000.0 (highest allowed boundary value). The bounding values and the numbers to average are inputs to the unit. The upper bound must be greater than the lower bound. If an invalid set of values is input for the boundaries an error message appears and the user is reported. If the boundary values are valid the unit computes the sum and the average of the numbers on and within the bounds. The average and sum are output by the unit, as well as the total number of inputs that lie within the boundaries. Derive a set of equivalence classes for the averaging unit using the specification, and complement the classes using boundary value analysis. Be sure to identify valid and invalid classes.

Design a set of test cases for the unit using your equivalence classes and boundary values. For each test case, specify the equivalence classes covered, input values, expected outputs, and test case identifier. Show in tabular form that you have covered all the classes and boundaries. Implement this module in the programming language of your choice. Run the module with your test cases and record the actual outputs. Save an uncorrected version of the program for future use.

CASE STUDY 3: Cyclomatic Complexity for Binary Search
Draw a control flow graph for the given binary search code and clearly label each node so that it is linked to its corresponding statement. Calculate its cyclomatic complexity.

```c
int binsearch (int x, int v[], int n)
{
    int low, high, mid;
    low = 0;
    high = n-1;
    while (low <= high) {
        mid = (low + high)/2
        if (x < v[mid])
            high = mid-1;
        else if (x > v[mid])
            low = mid+1;
        else /* found match*/
```
CASE STUDY 4: Data Flow Testing for Gregorian Calendar
A program was written to determine if a given year in the Gregorian calendar is a leap year. The well-known part of the rule, stipulating that it is a leap year if it is divisible by 4, is implemented correctly in the program. The programmer, however, is unaware of the exceptions: A centenary year, although divisible by 4, is not a leap year unless it is also divisible by 400. Thus, while year 2000 was a leap year, the years 1800 and 1900 were not. Determine if the following test-case selection criteria are reliable or valid.

(a) C1(T) ≡ (T = \{1, 101, 1001, 10001\})
(b) C2(T) ≡ (T = \{t|1995 ≤ t ≤ 2005\})
(c) C3(T) ≡ (T = \{t|1895 ≤ t ≤ 1905\})
(d) C4(T) ≡ (T = \{t \leq 400, 800, 1200, 1600, 2000, 2400\})
(e) C5(T) ≡ (T = \{t, t + 1, t + 2, t + 3, t + 4\} \land t \in \{100, 200, 300, 400, 500\})
(f) C6(T) ≡ (T = \{t, t + 1, t + 2, \ldots , t + 399\} \land t \in D)
(g) C7(T) ≡ (T = \{t1, t2, t3\} \land t1, t2, t3 \in D)

CASE STUDY 5: State based Testing for an Assembler
Suppose you were developing a simple assembler whose syntax can be described as follows:

\[
\begin{align*}
\langle\text{statement}\rangle & : = \langle\text{label field}\rangle\langle\text{op code}\rangle\langle\text{address}\rangle \\
\langle\text{label field}\rangle & : = \text{none} | \langle\text{identifier}\rangle : \\
\langle\text{op code}\rangle & : = \text{MOVE} | \text{JUMP} \\
\langle\text{address}\rangle & : = \langle\text{identifier}\rangle | \langle\text{unsigned integer}\rangle
\end{align*}
\]

A stream of tokens is input to the assembler. The possible states for such an assembler are: S1, prelabel; S2, label; S3, valid op code; S4, valid address; S5, valid numeric address. Start, Error, and Done. A table that describes the inputs and actions for the assembler is as follows:

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>no more tokens</td>
<td>A1: Put the label in the symbol table.</td>
</tr>
<tr>
<td>Identifier</td>
<td>A2: Look up the op code and store its binary value in op code field.</td>
</tr>
<tr>
<td>MOVE, JUMP colon</td>
<td>A3: Look up symbol in symbol table and store its value in address field.</td>
</tr>
<tr>
<td>Integer</td>
<td>A4: Convert number to binary, and store that value in address field.</td>
</tr>
<tr>
<td>A5: Place instruction in the object module, and print a line in the listing.</td>
<td></td>
</tr>
<tr>
<td>A6: Print error message and put all zeroes in the instruction.</td>
<td></td>
</tr>
</tbody>
</table>

Using this information and any assumptions you need to make, develop a state transition diagram for the assembler. From the state transition diagram develop a set of test cases that will cover all of the state transitions. Be sure to describe the exact sequence of inputs as well as the expected Sequence of state changes and actions.

CASE STUDY 6: Stress Testing of a Map-Aided Vehicle Tracking and Scheduling System
The American package courier and freight business faced the double pressures of consolidation and unstoppable increases in fuel costs. In mid-2008, pump prices were already double those
prevailing in early 2007. As well, the recent decision of long-time price leader DHL to co-locate dozens of routes with erstwhile competitor UPS revealed just how fragile are market positions built through decades of promotions.
In Omaha, regional freight leader Red Ball Trucking was keener than most to maximize operating efficiencies out of its substantial fleet of trucks and vans and thereby maintain margins in the face of low-cost rivals. In March 2008, a brand-new map-based adjunct to the company’s proprietary logistics and routing system neared rollout. Extensive –white box‖, line-by-line testing had eliminated most of the gross errors but the Red Ball CEO was concerned about the scalability of the program test bed.

Find out whether the map-enhanced vehicle tracking and scheduling system would remain stable at benchmarks of 50, 100 and 1000 concurrent users. Clean up any remaining bugs not caught by in-house.

CASE STUDY 7: Model Based Testing
Design and develop a scientific calculator program using various GUI components and events. Build the test model for the same. Determine the inputs that can be given to the model. Calculate expected output for the model. Run the test cases. Compare the actual output with the expected output. Any model based technique can be used for building the test model.

CASE STUDY 8: Web Application Testing for Student Grade System
With educational organizations under increasing pressure to improve their performance to secure funding for future provision of programmes, it is vital that they have accurate, up-to-date information. For this reason, they have MIS systems to record and track student enrolment and results on completion of a learning programme. In this way they can monitor achievement statistics. All student assignment work is marked and recorded by individual module tutors using a spreadsheet, or similar, of their own design. In the computing department these results are input into a master spreadsheet to track a student’s overall progress throughout their programme of study. This is then made available to students through the web portal used in college. Perform web application testing for this scenario.

CASE STUDY 9: Consider an Web based Loan application system http://www.mortgagecalculator.org/, which calculates the total interest, Monthly payment etc., to be paid based on the Loan term, loan interest, loan amount etc.,
 a) Write down the requirement specification for the above application.
 b) Design the test cases and perform Validation testing for the above application using any automated tool.

CASE STUDY 10: Consider an Web based Tax application http://finotax.com/itax/itax1011.htm, which calculates the Total tax to be paid for the academic year based on Total income, total deductions etc.,
 a) Write down the requirement specification for the above application.
 b) Design test cases and perform Functional testing.

CASE STUDY 11: Develop a Java program for student marks analyzing system.
 a) The System obtains following information’s from the faculty generates report Roll No, Name, Department, Semester, Marks obtained in each subject.
 b) The total for each student should be calculated and ranked based on total and pass in all the subject appeared.
 c) The Final report should display rank, percentage, Class, Pass/Fail Status for each
student.
Perform Unit testing for the above program using Junit feature.

CASE STUDY 12: Consider an Web based Loan application system http://www.mortgagecalculator.org/, which calculates the total interest, Monthly payment etc., to be paid based on the Loan term, loan interest, loan amount etc.,
 a) Write down the requirement specification for the above application.
 b) Design the test cases and perform Function testing for the above application using any automated tool.

CASE STUDY 13: Consider an Web based Tax application http://finotax.com/itax/itax1011.htm, which calculates the Total tax to be paid for the academic year based on Total income, total deductions etc.,
 a) Write down the requirement specification for the above application.
 b) Design test cases and perform Performance testing, using any automated tool.

CASE STUDY 14: Consider the ticket reservation scenario of online Air ticket reservation system and perform Load testing and analyze its metrics like response time, through put, Maximum user load, resource utilization.

CASE STUDY 15: Consider the browse catalog scenario of Library management system and perform stress testing and verify whether the system is able to recover itself after stress testing.

CASE STUDY 16: Develop a java GUI for Login scenario of course registration system. Implement encryption technique in the above scenario.
 a) Perform manual security testing to crack the above program.
 b) Calculate the response time in the above scenario.

CASE STUDY 17: Write a Java program for sorting the input in ascending order.
 a) Calculate cyclomatic complexity
 b) Perform Manual testing to see whether all the paths are covered or not.
 c) Perform Manual testing to see whether all the decision branches are covered or not.

CASE STUDY 18: Consider an Web based Tax application http://finotax.com/itax/itax1011.htm, which calculates the Total tax to be paid for the academic year based on Total income, total deductions etc.,
 a) Write down the requirement specification for the above application.
 b) perform Performance testing and measure its metrics.

CASE STUDY 19: Develop a Java program for student marks analyzing system.
 a) The System obtains following information's from the faculty generates report Roll No, Name, Department, Semester, Marks obtained in each subject.
 b) The total for each student should be calculated and ranked based on total and pass in all the subject appeared.
 c) The Final report should display rank, percentage, Class, Pass/Fail Status for each student.
Perform Functionality testing using manual techniques.

CASE STUDY 20: Develop a Java program for student marks analyzing system.
 a) The System obtains following information's from the faculty generates report Roll No, Name, Department, Semester, Marks obtained in each subject.
 b) The total for each student should be calculated and ranked based on total and pass in all the subject appeared.
 c) The Final report should display rank, percentage, Class, Pass/Fail Status for each student.
Calculate response time and the memory used by the program.

CASE STUDY 21: Consider an purchasing of product scenario of online shopping system,
a) Perform Validation testing of the GUI
b) Perform Security testing using any automated tool.

CASE STUDY 22: Develop a Java program for student marks analyzing system.
 a) The System obtains following information’s from the faculty generates report Roll
 No, Name, Department, Semester, Marks obtained in each subject.
 b) The total for each student should be calculated and ranked based on total and
 pass in all the subject appeared.
 c) The Final report should display rank, percentage, Class, Pass/Fail Status for
 each student.
 Perform Integration testing for the above program.

CASE STUDY 23: Consider any Online Air reservation system website
 Perform HTML code validation and CSS validation Testing using any automated tool.

CASE STUDY 24: Consider an online course registration system website. Perform
 Link checking and HTML validation using any automated tool.

CASE STUDY 25: Consider an online movie booking system. A customer can book
 any number of tickets either for the same day or different days. Customers can also modify or
 cancel the booked tickets. Payments are made through a secured gateway system. Design a
 webpage for booking the ticket scenario using HTML language and perform HTML validation.

CASE STUDY 26: Consider an online movie booking system. A customer can book
 any number of tickets either for the same day or different days. Customers can also modify or
 cancel the booked tickets. Payments are made through a secured gateway system. Design a
 webpage for booking the ticket scenario using HTML language and perform validation
 testing.

CASE STUDY 27: Design a simple online chat application which can transfer text messages
 using java. Calculate its response time.

CASE STUDY 28: Consider any online shopping system website. Perform Validation
 testing and functionality testing.

CASE STUDY 29: Prepare test plan and develop test case hierarchy

CASE STUDY 30: Generate Test cases and Test Documentation in the following
 applications Library System, Course Registration System, Implement a Quiz System, Student
 Marks Analyzing System, Online Ticket Reservation System, Stock Management System,
 Real Time Scheduler

REFERENCE
S:
 Delhi, 2003.
 7. Edward Kit, –Software Testing in the Real World - Improving the Process‖, Pearson
OPEN SOURCE SOFTWARE (Only for SE)

Course Objectives:
1. To analyze and understand the differences between the open source model and the commercial proprietary model
2. To gain hands-on skills and experience in using a variety of open source software and to develop and use evaluative methods for assessing OSS products

DEVELOPMENT ENVIRONMENT: Setting up a firewall – Using netfilter and IP tables – Using the GNU compiler collection – GNU compiler tools – C preprocessor (CPP) – C compiler (GCC) and the C++ compiler (G++) – Assembler (GAS) – Understanding build systems – Constructing make files and using make – Using autoconf and autogen to automatically generate make files tailored for different development environments – Using source code versioning and management tools – Using CVS to manage source code revisions – Patch and diff.

LINUX INTERNALS: Understanding the GNU LIBC libraries and linker – Linking against object archives (.a libraries) and dynamic shared object libraries (.so libraries) – Generating statically linked binaries and libraries – Generating dynamically linked libraries – Using the GNU debugging tools – GDB to debug programs – Graphical debuggers like DDD – Memory debugging / profiling libraries MPATROL and VALGRIND – Review of common programming practices and guidelines for GNU/Linux and FOSS – Basics of bash – SED and Awk scripting – Basics of the X windows server architecture.
DESKTOP PROGRAMMING: QT programming − GTK+ programming − Python programming − Programming GUI applications with localization support.

OPEN SOURCE LICENSES: GNU General Public License (GPL) version 2,3, GNU Lesser General Public License (LGPL) version 2.1,3, GNU Affero General Public License (AGPL) version 3, Apache License, Version 2.0, Artistic License 2.0, etc.

REFERENCES
8. An Introduction to GCC, Brian Gough. URL: http://www.networktheory.co.uk/docs/gccintro/
 URL:http://cvsbook.red-bean.com/
 URL: http://www.tldp.org/guides.html
12. GTK+/GNOME Application Development, Havoc Pennington.
 URL: http://developer.gnome.org/doc/GGAD/
17. The Dublin Core Metadata Initiative <http://dublincore.org/>
18. MARC standards <http://www.loc.gov/marc/>
22. Search / Retrieval via URL (SRU) <http://www.loc.gov/standards/sru/>
SOFTWARE MAINTENANCE AND EVOLUTION
(Only for SE)

- To acquire an understanding and appreciation of the challenges posed by software maintenance and software evolution.
- To learn about quality of architecture and source code and how it affects software maintenance and evolution.

MANAGEMENT: Configuration Management - Maintenance Measures.

BUILDING BETTER SYSTEMS: Building and Sustaining Maintainability – Maintenance Tools

STANDARDS: IEEE Standard for Software Maintenance

REFERENCES:
Course Objectives:

- To address the important engineering issues in building large-scale enterprise software systems.
- To emphasize service-oriented architectures (SOA) and best practices for building service-oriented enterprises in a vendor-neutral fashion.
- To understand the domain-driven architecture, service-oriented architecture and resource-oriented architecture.

Domain-Driven Architecture: Software Architecture - Domain-Driven Design - Application Frameworks - Domain-Specific Languages (DSLs) - An Example API for Persistent Domain Objects - Domain-Driven Architecture.

Resource-Oriented Architecture: Representational State Transfer - RESTful Web Services - Resource-Oriented Architecture (ROA) - Interface Description Languages - Web Services Description Language (WSDL) - Web Application Description Language (WADL) - An Example Application Program Interface (API) for Resource-Oriented Web Services - Hypermedia Control and Contract Conformance.

LAB COMPONENTS: (Only for SE)

The students are expected to carry out one or two case studies.

CASE Study 1: Create a web page with the following using HTML5
 (i) To embed an image map in a web page
 (ii) To fix the hot spots
 (iii) Show all the related information when the hot spots are clicked.

CASE Study 2: Create a web page with all types of Cascading style sheets.

CASE Study 3: Implement Client Side Scripts for Validating Web Form Controls using JavaScript.

CASE Study 4: Designing Quiz Application Personal Information System Using JavaScript

CASE Study 5: Write a JavaScript for Loan Calculation.

CASE Study 6: Develop and demonstrate a HTML file that includes JavaScript that uses functions for the following problems:
 a) Parameter: A string
 Output: The position in the string of the left-most vowel
 b) Parameter: A number
 Output: The number with its digits in the reverse order

CASE Study 7: Develop PHP program using Arrays, control structures, looping structures and Form Handling

CASE Study 8: Using PHP and MySQL, develop a program to accept book information viz. Accession number, title, authors, edition and publisher from a web page and store the information in a database and to search for a book with the title specified by the user and to display the search results with proper headings.

CASE Study 9: Write an AJAX program for parsing a JSON file and formatting the output.

CASE Study 10: Develop a web application for Airline Reservation System using PHP & AJAX.

CASE Study 11: Develop a web application for Airline Reservation System using EJB.

CASE Study 12: Develop a web application for Airline Reservation System using JSP.

CASE Study 13: Writing an RMI application for Airline Reservation System to access a remote method

CASE Study 14: Writing an application for Airline Reservation System using CORBA

CASE Study 15: Writing an application for Airline Reservation System using COM

CASE Study 16: Writing an application for Airline Reservation System using DCOM

CASE Study 17: Writing a Servlet program with database connectivity for a web based application such as students result status checking, PNR number enquiry etc

CASE Study 18: XML document creation.

CASE Study 19: Importing and Exporting XML document in database.

CASE Study 20: XSL Transformation

CASE Study 21: Internal and External DTD creation

CASE Study 22: XML Schema creation

CASE Study 23: Parsing XML document using DOM/SAX parser.
CASE Study 24: Web Service creation using JAX-WS
CASE Study 25: Web Service creation using JAX-RS
CASE Study 26: Web Service creation using .NET CASE
Study 27: JAXB Marshaling and Unmarshaling CASE
Study 28: Implementation of RESTful services CASE
Study 29: Design of simple cloud services

REFERENCES: