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I have no satisfaction in formulae,  
    

unless I feel their numerical magnitude. 

 
  - Lord Kelvin 
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Measurement and Error 
 

Measurement is a fundamental activity of any scientific endeavour. Measurement can range 

from mundate activitiy of measuring our body temperature to measuring distance between two 

stars. For any physical quantity we define  

 

Error = True Value− Approxmiate value . 

 

It is also useful to define 

Relative Error =  
 Error 

 True Value 
 

 

for further analysis of error. Error, which is inherent and so inevitable in all problems, araises 

from 

 

 statement of the problem 

 simplfied assumptions in mathematical formulation of the problem 

 physical measurements. 

 

In what follows we demonstate the possiblity of reducing error in simple measurement devices.  

 

We all know that the smallest value that can be measured accurately with a metre scale is 1mm. 

This quantity is called as Least Count (LC) which signifies the accuracy of length measurement 

using metre scale. LC can be reduced by a combination of two scales one on top of the other. A 

clever design of a small extra (vernier) scale, which dates back to 1631 by a French 

mathematician Pierre Vernier, improves the precision in length measurement. This is 

demonstrated using a typical vernier caliper as shown below. 

 

 

 
 

 
Main scale and vernier scale 

 
 

 
             Vernier Caliper 
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In the above diagram, vernier scale has 10 divisions such that they equal 9 divisions of main 

scale. If 1 𝑀𝑎𝑖𝑛 𝑆𝑐𝑎𝑙𝑒 𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛 (𝑀𝑆𝐷) = 1𝑚𝑚 and 10 𝑉𝑒𝑟𝑛𝑖𝑒𝑟 𝑆𝑐𝑎𝑙𝑒 𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛 (𝑉𝑆𝐷)  =
9 𝑀𝑆𝐷, then 1 𝑉𝑆𝐷 =  0.9 𝑀𝑆𝐷 = 0.9𝑚𝑚.   Then,   the LC of vernier caliper can be defined as  

𝐿𝐶 = 1𝑀𝑆𝐷 − 1𝑉𝑆𝐷 = 0.1𝑚𝑚. In other words, vernier scale improves accuracy of the main 

scale by 10 times. 

 
 
 
 
 
 
 
 
 
 
 

Measurement using Vernier caliper 

 
Measuring length of a rod using vernier caliper is shown here. From the mail scale reading 

(MSR) and vernier scale reading (VSR), the length can be calculated as follows: 

 

𝐿𝑒𝑛𝑔𝑡ℎ = 𝑀𝑆𝑅 +  𝑉𝑆𝑅 × 𝐿𝐶 = 33 +  8 × 0.1 𝑚𝑚 = 33.8𝑚𝑚. 
 

Measurement principle of travelling microcscope is similar to the above. The only difference is 

that the vernier scale has 50 divisions which equal 49 divisions of the main scale, and 1𝑀𝑆𝐷 =

0.5𝑚𝑚.  That is, 50 𝑉𝑆𝐷 =  49 𝑀𝑆𝐷, or 1 𝑉𝑆𝐷 =  
49

50
 𝑀𝑆𝐷. Then the LC of travelling 

micrscope 𝐿𝐶 = 1𝑀𝑆𝐷 − 1𝑉𝑆𝐷 = 0.01𝑚𝑚. In other words, the accuracy of microscope is 10 

times more than that of the vernier caliper.  

 

Same principle is being followed in spectrometer to measure the angle. In a typical spectrometer, 

1𝑀𝑆𝐷 = 0.50 = 30′ (30 minutes) and 30 𝑉𝑆𝐷 =  29 𝑀𝑆𝐷, or 1 𝑉𝑆𝐷 =  
29

30
 𝑀𝑆𝐷. With this, 

𝐿𝐶 = 1𝑀𝑆𝐷 − 1𝑉𝑆𝐷 = 1′. In other words, spectrometer can measure an angle to the accuracy 

of 1′ (one minute).  

 

With this, particular position 𝑥 of micrsoscope (or) spectrometer can be calculated as 

 

𝑥 = 𝑀𝑆𝑅 +  𝑉𝑆𝑅 × 𝐿𝐶 . 
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1. TORSIONAL PENDULUM WITH RING 

 

Aim  
 

To determine the rigidity modulus of the material of a wire and moment of inertia of annular 

ring. 

 

Apparatus required 
 

Screw gauge, stop clock, torsional pendulum, symmetric masses and weighing balance. 

 

Formulae 
 

Rigidity modulus of wire,  𝐺 =
1

𝑎4
8𝜋𝑚𝑅2  

𝑙

𝑇𝑟𝑑
2  − 𝑇𝑑

2   Nm
-2

  (Pascal). 

 

Moment of Inertia of annular ring, 𝐼𝑟 = 𝐼𝑑   
𝑇𝑟𝑑

𝑇𝑑
 

2
− 1 , kg m

2 

 

where 𝐼𝑑 =
1

2
𝑀𝑅2 is the moment of inertia (theoretical) of the circular disc of mass 𝑀 and 

radius 𝑅.   

 

Moment of inertia of annular ring (theoretical), 𝐼𝑟 =
1

2
𝑚 𝑅1

2 + 𝑅2
2  kg m

2
. 

 

Other symbols in the formulae have the following meaning: 

 

𝑚 - mass of the annular ring  (kg) 

𝑎 - radius of the wire (m) 

𝑙 - length of the wire from the disc top (m) 

 𝑇𝑟𝑑 , 𝑇𝑑        - mean period with ring and without ring  (sec) 

𝑅1, 𝑅2 - inner and outer radii of the ring (m). 

 

Procedure 
 

Torsional pendulum consists of an iron disc of known mass 𝑀 hanging by a wire (Fig. 1.1). 

From the oscillations of the disc, rigidity modulus of the wire as well the moment of inertia of 

the disc can be calculated as follows. Measure the length of the wire (𝑙) from the bottom of the 

binding screw to the top of the chunk nut.  Determine thickness of the wire at different positions 

using screw gauge and hence find the average radius 𝑎.   

 

Rotate the disc, through a small angle, hold it in this position for a moment and then release it.  

The pendulum will perform torsional oscillations of small amplitude.  Leave one or two 

oscillations and then determine the time taken for 10, 20 and 30 oscillations and tabulate the 

same. From the time of oscillation, calculate the average period as 𝑇𝑑 .  Place a circular ring, with 

inner and outer radii 𝑅1 and 𝑅2 respectively, on the disc and determine the corresponding period 

of oscillations 𝑇𝑟𝑑  as before. Then calculate radius of the disc and ring by measuring its 

circumference. Using the above formulae, rigidity modulus of the wire and moment of inertia of 
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the disc can be calculated. Calculated moment of inertia can then be compared with the 

theoretical value.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.1: Torsional Pendulum with annular ring 
 
Length of the wire  𝑙 = …………. m 

Mass of the annular ring 𝑚 = ………… kg 

Mass of the circular disc 𝑀 = ………… kg 

Radius of the disc  𝑅 = …………. m 

Inner radius of the annular ring 𝑅1 = ………… m  

Outer radius of the annular ring 𝑅2 = ……….. m  

 
Table 1.1: To find the thickness of wire 

 

Least count (LC) = … mm, Zero error (ZE) = ….. mm,    Zero Correction (ZC)= ….. mm 

 

S. No. 
PSR 

(mm) 

HSR 

(div) 

Observed Reading 

OR = PSR + (HSR × LC) 

(mm) 

Corrected Reading 

CR = OR + ZC 

(mm) 

     

  
Thickness, 2𝑎 = ……….. m 
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Table 1.2: To find the period of oscillation of torsional pendulum 

 

S. No. Pendulum  
Number of 

oscillations 

Time 

(sec) 

Period 

(sec) 

Mean Period 

(sec) 

1 

 

2 

 

3 

 Without ring 

10 

 

20 

 

30 

  𝑇𝑑 = 

1 

 

2 

 

3 

 With ring 

10 

 

20 

 

30 

  𝑇𝑟𝑑 = 

 
 

Result  
 

Rigidity modulus of the wire 𝐺 = ………….. Nm
-2 

Moment of inertia of the ring (experimental) 𝐼𝑟 = …………. kg m
2 

Moment of inertia of the ring (theoretical) 𝐼𝑟 = ………….. kg m
2 

. 
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2. NUMERICAL APERTURE OF AN OPTICAL FIBER 
 
Aim 
 

To determine the numerical aperture (measure of light carrying capacity) of a fiber cable. 
 

Apparatus required  
 

Optical fiber cable, photo detector and light source. 

 
Formula 

 

Numerical Aperture (experimental), 

 

      N.A. = Sin max  = 
224 WL

W


  

where   
 

 max – acceptance angle (deg) 

L – distance of the screen/detector from the fiber end (m) 

W –  is the diameter of the spot (m). 

  
Procedure 
 
Optical fiber is a thin co-axial cable of two transparent materials. The inner one is called the 

core with refractive index n1 and the outer one is called the cladding with refractive index n2, 

such that n1 > n2. Acceptance angle of an optical fiber is the maximum incident angle of the 

light ray that enters and propagates through the fiber by total internal reflection. We may note 

that the light ray emerging from other end of the fiber will make the same angle with the fiber 

axis as that of the incident ray. Numerical aperture of an optical fiber is defined as the sine of 

the acceptance angle, which is theoretically given as 
2

2
2

1.. nnAN  . Refractive indices of the 

optical fiber we use are n1 = 1.492 and n2 = 1.402. Numerical aperture can also be calculated 

experimentally for a given fiber by measuring width of the light spot comes out from the fiber as 

shown in Fig. 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Fig. 2.1: Intensity profile and width of the light spot 
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Fig. 2.2 Optical fiber setup 
 

Experimental setup is as shown in Fig. 2.2. One end of the one metre fiber cable is connected to 

the PO of light source (laser) and the other end to the photo detector. Adjust the fiber such that 

the light appear at the other end of the fiber and allow it to fall on the photo detector. Intensity of 

the laser light is adjusted to a maximum value using the knob provided. As the PO knob is 

turned clockwise or anticlockwise the intensity varies. Intensity of the light emerging from the 

fiber can be measured in terms of photo-current using the detector. 
 
Let L be the distance of the detector from other end of the cable. If the detector is moved 

laterally, the intensity will be maximum when the detector is along the axis of the fiber. Intensity 

will decrease as the detector is moved on either side of the fiber axis. For a fixed L, the lateral 

distance of the detector and the corresponding intensities (min – max – min) are noted. A graph 

between the lateral distance and the intensity will result to a Gaussian shaped curve, which is the 

typical intensity profile of the light emerging out of the fiber. The width of the Gaussian curve 

W is the diameter of the light spot. From this, the numerical aperture of the given fiber can be 

calculated using the above formula. The same procedure is repeated for different L and the 

results can be compared with the theoretical value. 

 

Table 2.1: To find the intensity profile across the axis of fiber  
 

L = …….. (m) 

Distance (mm) Intensity (mA or mV) 

  

 

 

 

 

 

 

L = …….. (m) 

Distance (mm) Intensity (mA or mV) 
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  Table 2.2: To find the acceptance angle 

 

S. No. 
Distance  L   

(m) 

Diameter of  

the spot W (mm) 
N.A. = 

224 WL

W


 max (deg) 

     

     

 

Result 
 

Numerical aperture of the fiber N.A. (theoretical)      =  ……… 

Numerical aperture of the fiber N.A. (experimental)  =  ………. 

        Acceptance angle,  max    = ……….   deg 
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3. CALIBRATION OF VOLTMETER – POTENTIOMETER 
 
Aim 
 
To calibrate the high range voltmeter using a potentiometer and a standard cell.  
 

Apparatus required 

 

Potentiometer, rheostat, voltmeter, galvanometer, high resistance, d.c. power source, connecting 

wires and standard cell (Daniel cell). 

 

Formula  

 Voltage measured using potentiometer, 

P

QP

l

l
V














0

08.1     Volts 

where  

l0  - balancing length of the potentiometer wire (m) 

P, Q – resistance boxes ()  

l – balancing length against the different ratio of [P + Q]  (m). 
 

Procedure 
 
(1) To standardize the potentiometer 
 
For standardizing the potentiometer, firstly we apply a constant d.c. voltage across the two ends 

of the potentiometer. For this we can use a 2V accumulator or a 2V stabilized power supply. If a 

stabilized power supply of 6V is available we have to use a potential divider arrangement with a 

rheostat and voltmeter to tap 2V. With this, we drop 2V across the 10m length of potentiometer 

wire.  

 

Further, for standardization we use a standard cell of constant emf (here, Daniel cell of 1.08V). 

The polarity of Daniel cell is such that the outer copper vessel is positive and the zinc rod is 

negative. Make the circuit as shown in Fig. 3.1, wherein care must be taken to connect the 

positive end of potentiometer wire to the positive of the Daniel cell. 

 

Remove the plug in the high resistance (H.R) and press the jockey J on the potentiometer wire 

near the end A and note the direction of deflection in the galvanometer G. Press the jockey near 

the other end B, and now the deflection in G must be opposite to the earlier deflection. If so the 

connections are correct, otherwise connections need to be checked. 

 

Now find the approximate balancing length (for which the deflection in G is zero). Keeping the 

jockey near the approximate balancing length, H.R. can now be bypassed by putting its key. 

This results to more deflection in G, and now by adjusting the position of J, more accurate 

balancing length l0 can be found. In other words, the potential across A and J is equal to the 

potential of Daniel cell (i.e., 1.08V). Then, the potential corresponding to 1m length of 

potentiometer wire is 
0

08.1

l
 Vm

-1
. 
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Fig. 3.1: Standardizing potentiometer 

 

 
(2) To calibrate the voltmeter 
 

Without disturbing the primary (earlier) circuit, disconnect the Daniel cell and make the new 

circuit as shown in Fig. 3.2. Make sure that the polarities are maintained correctly at each point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2: Measuring voltages 

 

Adjust the rheostat in the secondary circuit so that the voltmeter reads 1V. The resistances P and 

Q must be such that the potential difference across P is less than 2V, since the voltage between 

A and B are 2V. Now find the balancing length l, which corresponds to the potential across P. If 

VP is the voltage across P, then 











0

08.1

l
lVP .    With this we shall now find the voltage across 

(P + Q), as shown below, and can be compared with the voltmeter reading. If V´ is the voltage 

across (P +Q), then from Fig. 3.3 we have 
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. 

  Fig. 3.3: Diagram for V’ 

 

Repeat the experiment for different voltmeter readings (e.g. 1V - 5V in steps of 0.5V), by either 

keeping the resistances P and Q the same or varying them each time suitably, if necessary. 

Tabulate the observations as follows and draw the calibration graph between the voltmeter 

reading and correction. 

 

Table 3.1: To find the correction in voltage measurement  

 

S. No. 

Voltmeter 

Reading V 

(Volts) 

Balancing 

length l 

(m) 

Calculated voltage  

across (P+Q)  

V´ (Volts) 

Correction 

V´ - V 

(Volts) 

 
 
 
 
 
 

    

 
 
 
 
 
 
 
 
 
 
 
 

F 
 

Fig. 3.4:  Voltmeter reading .vs. Correction 
 
Result 
  
Potentiometer is standardized, and with this given voltmeter is calibrated.  
Maximum value of  𝑉 ′ − 𝑉 =………… Volts                                                                   

.
)( QP

V

P

V
I P






In other words, 


















0

08.1
)( l

l

QP

PV
VP 







 












P

QP

l

l
V

0

08.1(or) 
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4. FIELD ALONG THE AXIS OF A CIRCULAR COIL  
                                                                      

Aim 
 

To determine the horizontal component of earth’s magnetic induction B and magnetic moment 

of a bar magnet using field along the axis of a current carrying coil apparatus with deflection 

magnetometer. 

 

Apparatus required 
 

Field along the axis of coil apparatus, deflection galvanometer (compass box), bar magnet, 6V 

battery, rheostat, commutator, ammeter and connecting wires. 
 

Formulae 
 

Magnetic field produced along the axis of a coil at a distance x from the centre, 

            2/322

2

0

)(2 xa

Ian
BC





     Tesla 

where    

0 = 4  10
-7

 Henry/metre, permeability of free space 

n – number of turns in the circular coil 

a – radius of circular coil (m) 

I –  current passed through the coil (A) 

x –  distance between centre of the coil and center of magnetic needle (m). 

 

The field due to the circular coil is in east-west direction, which is perpendicular to the 

horizontal component of earth’s magnetic field B. Then if  is the mean deflection in 

magnetometer due to both these fields, tangent law of magnetism implies that tanBBC  . 

Then the earth’s magnetic field,  

tan

CB
B     Tesla

 

where   is mean deflection produced in the deflection magnetometer (deg). 
 

Magnetic moment of the bar magnet is given by,  

 

  
d

ldB
M C

0

222 )(2



 
  A m

2 

where 

d – distance of the center of the bar magnet from the centre of the compass box (m) 

l – semi-length of the bar magnet (m). 

 

Procedure  
 

Remove magnetic materials, if any, from the vicinity of the apparatus.  The wooden platform, 

with circular coil fixed in the middle, is kept in magnetic east-west direction and the plane of 

coil in the magnetic meridian. A compass box is placed with its centre coinciding with the centre 

of the coil, and adjusted so that its aluminum pointer reads zero-zero. The apparatus is now in 
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Tan A position. A circuit is made as shown in Fig. 4.1. Rheostat and ammeter should be kept 

sufficiently away from the circular coil.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.1: Field along the axis setup 
 

Without disturbing the apparatus, move the compass box slowly and keep it at a distance x from 

the centre of the coil on one side, say east. The rheostat is adjusted to pass a suitable current I 

amps through the coil such that deflection in the compass box is between 30 and 60. Let the 

deflections, as read by the aluminum pointer, be 1 and 2. Keep the given bar magnet on eastern 

side of the compass box on the platform with its axis along the axis of the coil.  The position of 

the magnet is adjusted until the deflection in the compass box becomes zero. Note this distance 

as d1.  

 

The current in the coil is now reversed using commutator and the deflections without the magnet 

in vicinity are noted as 3 and 4. The magnet is reversed end-to-end and the distance 

corresponding to zero deflection is noted as d2. The experiment is repeated by keeping the 

compass box and bar magnet on the western side of the coil. The mean deflection  and the 

mean distance d are obtained. Similarly, repeat the experiment by keeping the compass box at 

various distances from the centre of the coil. The radius of the coil a is found from it 

circumference using a thread. The horizontal component of earth magnetic induction BH and the 

magnetic moment of the bar magnet M are calculated using the above formulae.  

 

Table 4.1: To determine B 

  

Distance 

x 

(m) 

East West 
Mean 

  
(deg) 

2/322

2

0

)(2 xa

Ina
BC






 (Tesla) 

tan

CB
B   

(Tesla) 

Direct  Reversed Direct Reversed 

1 2 3 4 5 6 7 8 
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Table 4.2: To determine M 
 

Distance 

x (m) 

Distance  

of the magnet (m) Mean  

d (m) 
2/322

2

0

)(2 xa

Ian
BC





 

(Tesla) 

d

ldB
M C

0

222 )(2



 
  

                 (A m
2
) d1 d2 d3 d4 

        

 

Result           
 

Horizontal component of earth’s magnetic induction, B  =  ……… Tesla 

Magnetic moment of the bar magnet, M = ……… A m
2
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5. WAVELENGTH OF A LASER USING DIFFRACTION GRATING 
 

Aim 
 

To determine the wavelength of the laser light from the principle of diffraction. 

 

Apparatus required 
 

Laser, diffraction grating, screen and meter scale. 

 

Formula 
 

               
nN

Sin
    m   

where 

 

λ – wavelength of the laser (m) 

N – number of lines/m in the grating (N = 15000 lines/inch);              (1 inch = 2.54 cm)  

n – order of diffraction  

  - angle of diffraction (deg). 

 

Procedure 
 

The experimental setup consists of a laser, whose wavelength to calculated, and laser the beam 

is allowed to fall normally on a diffraction grating. A white screen is kept at a distance L from 

the grating as shown in Fig. 5.1. The directed ray of the laser beam will appear as a small dot in 

the middle of the screen. In addition, diffracted spots will appear at equal distance on either side 

of the centre spot (corresponding to direct ray). If D is the distance of the diffracted spot from 

the centre spot, then the angle of diffraction satisfies the relation, 
L

D
tan . From this we can 

calculate sin θ. The experiment is repeated for different L. Then using the above formula, the 

wavelength λ of the laser is calculated. 

 

 

 

Fig. 5.1: Laser diffraction setup 
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Table 5.1: To find the angle of diffraction of first order (n = 1) 

 

Distance 

between grating 

and screen  

L (cm) 

Distance between 

centre spot and spot 

on left side 

D1 (cm) 

Distance between 

centre spot and spot 

on right side  

D2 (cm) 

 

Mean D 

(cm) 

Tan θ Sin θ 

 

 

 

 

 

 

 

 

 

 

     

 

Table 5.2: To find the angle of diffraction of second order (n = 2) 

 

Distance 

between grating 

and screen  

L (cm) 

Distance between 

centre spot and spot 

on left side 

D1 (cm) 

Distance between 

centre spot and spot 

on right side  

D2 (cm) 

 

Mean D 

(cm) 

Tan θ Sin θ 

 

 

 

 

 

 

 

 

 

 

     

 

 

Result 
 

Wavelength of the laser,  = ……… m 
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6. DISPERSIVE POWER OF A PRISM – SPECTROMETER 
 

Aim  
 

To determine the refractive index of material of the prism using mercury light source and hence 

to determine the dispersive power of the prism. 

 

Apparatus required 
 

Spectrometer, prism, mercury light source and spirit level. 

 

Formulae 

 Refractive index of the prism, 

















 



2

2

A
Sin

DA
Sin

  

 

 Dispersive power of the prism, 

1
2







rv

rv




     

where  

 

A – angle of the prism (deg) 

D – angle of minimum deviation (deg) 

µv – refractive index of the prism for violet 

µr – refractive index of the prism for red. 

 

Procedure 
 
(1) Initial adjustments of spectrometer 
 

1. Eye-piece adjustment:  Eye-piece is adjusted until the cross wires are clearly seen when 

viewed through the telescope. 

2. Telescope adjustment: Telescope is adjusted until a clear, well defined inverted image of 

a distant object is seen through the eye-piece. 

3. Slit adjustment: Slit is made narrow with the help of the screw. 

4. Collimator adjustment: The slit is illuminated by a source of light and the telescope is 

brought on line with collimator. If the image of the slit appears blurred, then the screw of 

the collimator is adjusted until a clear image is seen when viewed through the telescope. 

Now the rays of light emerging from the collimator will be rendered parallel. 

5. Prism table adjustment: A spirit level is placed on the prism table, parallel to the line 

joining any two leveling screws.  The air bubble in the spirit level is brought to the centre 

by adjusting the two levelling screws.  It is then placed in a perpendicular direction and 

the air bubble is brought at the centre by adjusting the third screw.  Now the prism table 

is horizontal. 

6. Spectrometer base:  The base of the spectrometer is adjusted to the horizontal with the 

help of the three leveling screws. 
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(2) To find the angle of prism 
 

Mount the prism on the prism table and orient it in such a way that the refracting edge of the 

prism almost bisects the collimating lens. Turn the telescope to receive the reflected image of the 

slit (illuminated by the mercury light source) from the face AB as shown in Fig. 6.1. Using the 

tangential screw of the telescope make the vertical cross wire to coincide with the image of the 

slit.  Note down the readings of both the verniers. Then turn the telescope to receive the rays 

reflected from the face AC and note down the readings as earlier. The difference between the 

two readings of both the vernier is 2, twice the angle of the prism. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.1:  Angle of Prism 

 

Table 6.1: To find the angle of prism 

 

Least Count (LC) = …… 

 

Ray 

Telescope Readings 

Vernier A (deg) Vernier B (deg) 

MSR VSR TR  MSR VSR TR 

Reflected from 

face AB 
      

Reflected from 

face AC 
      

 

                                                        2A =                                                        2A = 
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(3) To find the angle of minimum deviation and dispersive power 

 

The prism is mounted as shown in Fig. 6.2 such that light emerging from the collimator is 

incident on one of the refracting faces of the prism. The telescope is slowly rotated to catch the 

refracted image of the slit (say, green) emerges from other face of the prism. Now by viewing 

through the telescope, the prism table is slightly rotated in such a way that the green image 

moves towards the direct ray and at a particular position it retraces its original path.  This 

position is called the minimum deviation position. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.2: Angle of minimum deviation 

 

The prism table is fixed and now all the prism is set into minimum deviation position. The 

tangential screw is adjusted so that each colour of the slit coincides with vertical cross wire and 

the readings are tabulated.  The prism is removed and direct ray reading is noted. Difference 

between the direct ray and the refracted ray readings for each colour gives the angle of minimum 

deviation (D) for the respective colour. By substituting the values of D and A in the above 

formula, refractive indices of the prism for each colour can be calculated. 

 

From the refractive indices for a pair of colours (say, violet and red) dispersive of the prism can 

be calculated using the above formula. 
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Table 6.2: To find the angle of deviation and refractive index 

 

Least Count (LC) = ………                                                     Angle of prism A = ………. deg 

 

Direct ray reading:   Ver A = ……… deg,                  Ver B = ………. deg 

 

Spectral 

lines 

Vernier A (deg) Vernier B (deg) D (deg) 
µ 

MSR VSR TR MSR VSR TR VA VB 

Violet I 
 

 
        

 

  Voilet II 
 

         

Blue 
 

 
        

Bluish 

Green 
         

Green 
 

 
        

Yellow 
 

 
        

Orange 
 

 
        

Red 
 

 
        

 

Result 
 
Angle of the given prism, A = ……… deg 

Refractive index of the prism (for yellow),  μ = …….. 

Dispersive power of the prism,  = ……. 
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7. WAVELENGTH OF MERCURY SPECTRUM – SPECTROMETER 
 

Aim 
 

To determine the wavelengths of mercury (Hg) spectrum by using plane transmission grating. 

 

Apparatus required 
 

Spectrometer, plane transmission grating, sodium vapour lamp, mercury vapour lamp and spirit 

level. 

 

Formula 
 

Number of lines drawn on the grating per meter is given by 
      

  




n

Sin
N   lines/m. 

 

Wavelength of prominent lines of the mercury spectrum is given by  

     

  
nN

Sin
    m

  
 

where 

 

n – order of the spectrum  

 - wavelength of the sodium vapour lamp (A
 
) 

 - angle of diffraction (deg). 

 

 

Fig. 7.1: Spectrometer with grating 
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Procedure  
 
(1) Adjustment of grating for normal incidence 
 

Preliminary adjustments of the spectrometer are made. The grating G is mounted on the grating 

table with its ruled surface facing the collimator. The slit is illuminated by a source of light 

(sodium vapour lamp) and is made to coincide with the vertical cross wire of the eye-piece. For 

this directed ray, the vernier scales are adjusted to read 0 and 180. The telescope is rotated 

through an angle 90 and is fixed. The grating table is adjusted such that the reflected image of 

the slit coincides with the vertical cross wire. Now the grating table is  fixed at this position, 

wherein the normal to the grating makes an angle of 45º to both the incident and the reflected 

rays as shown in Fig. 7.1(a).  

 

Rotate the vernier table through 45 in the same direction in which the telescope has been 

previously rotated, so that the grating will now be normal (perpendicular) to the incident ray 

from the collimator. This is seen in Fig. 7.1(b). The telescope is released and is brought on line 

with the direct image of the slit and now the grating is said to be in the normal incidence 

position. 

 
(2) Standardization of grating (to find the number of lines per meter) 
 

The telescope is released to get the diffracted image of the first order on the left side of the 

central direct image. The readings are tabulated from the two verniers. Similarly readings are 

taken for the right side of the central direct image. The difference between the two readings 

gives 2, where  is the angle of first order diffraction. The number of lines per metre (N) of the 

grating is calculated using the given formula. The experiment is repeated for the second order 

and the readings are tabulated. 

 
(3) Determination of wavelength of the mercury spectrum 
 

 The sodium vapour lamp is now replaced by mercury vapour lamp. The diffracted 

images of the first order are seen on either side of the central direct image. As before the 

readings are tabulated by coinciding the vertical cross wire with the prominent lines namely 

violet, blue, bluish-green, green, yellow, orange and red of the mercury spectrum. The difference 

between the readings gives 2θ, and from this  is obtained. The wavelength of each spectral line 

is calculated using the above formula.  

 

Table 7.1: To find the number of lines per metre of the grating (N) 

 

Least Count (LC) =  ……..,   n = 1,               = ……….. m 

 

Diffracted 

Ray 

fringes 

 

 

 

 

Vernier A (deg) 
 

Vernier B (deg) 

 

2  

(deg) 

 

Mean 

 
(deg) 

 





n

Sin
N   

(lines/m) MSR VSR TR MSR VSR TR Ver A Ver B 

Left 

Side 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Right  

Side 
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Table 7.2: Determination of wavelength () of the mercury spectrum 

 

Least Count (LC) = ……..,            n = 1,            N  = ………… lines/m 

 

Spectral 

lines of 

mercury 

light 

 

Diffracted ray reading (deg) Difference 

2 

(deg) 

Mean 

 
(deg) 

 

nN

Sin
    

(m) 

 

Left Right 

Ver A  Ver B  Ver A Ver B Ver A Ver B 

 

Violet I 
 

        

 

Violet II 
 

        

 

Blue 
 

        

Bluish 

Green 
        

 

Green 
 

        

 

Yellow 
 

        

 

Red 
 

        

 

 

Result 
 

Number of lines in the grating , N = ………  lines/m 

Wavelengths of the spectral lines are   

Violet I    = ………… m 

Violet II   = ………… m 

         Blue   = ………… m 

      Bluish Green   = ………… m   

      Green   = ………… m 

               Yellow   = ………… m 

     Orange  = ………… m 

         Red   = ………… m 
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8. RADIUS OF CURVATURE OF LENS – NEWTON’S RING 

 

Aim 

 

To determine the radius of curvature of a given lens by forming Newton’s rings. 

 

Apparatus required  

 

Newton’s ring apparatus, long focus convex lens, sodium vapour lamp, condensing lens, 

traveling microscope. 

 

Formula 

 

 Radius of curvature,  

                                 

   
15

22

15 nn rr
R


 

  m 

where  

λ – wavelength of sodium light (5893 Å)  

rn  - radius of n
th

 ring (m).            

 

Experimental Setup 

 

Light from sodium vapour lamp S is rendered parallel by a condensing lens L. The parallel beam 

is incident on a plane glass plate G, inclined at an angle 45
o
 to the horizontal, and gets reflected. 

The reflected light is incident normally on the convex lens glass plate system. The interference 

pattern is viewed through a microscope M (Fig. 8.1). The microscope is moved up and down 

until alternate bright and dark circular rings are observed. These rings are called Newton’s rings. 

In this system, the central ring will be a dark ring. For want of proper curvature in the convex 

lens, the central ring and a few rings at the centre will not be well defined. Hence that dark ring 

which appears as a perfect circle is taken as the n
th

 ring.  

 

Procedure 

 

To find the diameter of  n
th

 dark ring, vertical cross wire of the microscope is made tangential to 

the left and right sides of the ring and readings are taken. The difference between the two 

readings gives the diameter from which the radius can be calculated. Similarly, the radius of 

other rings can be found. But this process involves movement of the microscope in opposite 

directions which will result in an error in the reading known as the back lash error. Further, since 

the rings get closer as we go away from the central ring system, it may be difficult to find the 

diameter for each ring. Both these difficulties are overcome by the following procedure.   
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Fig. 8.1: Newton’s set-up and ring pattern 
 

Table 8.1: To determine the radius of curvature of convex lens 
 

Least count (LC) =  …..  mm                                                

Order of 

rings 

Microscope  

reading (m) 

 

Diameter 

2r (m) 

r  

(m) 

r
2  

(m
2
) 

22
15 nn rr   

(m
2
) Left Right 

n 

n + 3 

n + 6 

n + 9 

n + 12 

n + 15 

n + 18 

n + 21 

n + 24 

n + 27 

      

              Mean =  

Microscope is moved until vertical cross wire is tangential to the (n+27)
th

 ring on left side and 

reading is taken. Similarly, readings are taken for (n+24)
th

, (n+21)
st
… n

th
 rings on the left side. 

Then microscope is moved in the same direction to the right side of ring pattern, and readings 

are taken by keeing the vertical cross wire tangential to the n
th

, (n+3)
rd

, … (n+27)
th

 rings. From 

the above readings, diameter and hence the radii r of all the rings are calculated. Readings are 

entered in a tabular column, wherein values in the last column will be a constant. Radius of 

curvature of the lens R can then be calculated using the above formula.  

 

Results 

     

Radius of curvature of the lens, R  = …………  m 
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9. CONVERSION OF GALVANOMETER INTO 
AMMETER AND VOLTMETER 

 

Aim 
 

To convert a given galvanometer into ammeter and voltmeter. 

 

Apparatus Required 
 

Ammeter, voltmeter, galvanometer, rheostat, shunt wire, resistance box and power supply. 

 

Procedure 
 
(1) Conversion of galvanometer into ammeter 

 
Conversion of galvanometer into ammeter is usually employed to measure small current of the 

order of micro ampere.  For measuring large currents, a shunt is usually connected in parallel 

with the galvanometer as shown in Fig. 9.1, so that only a fraction of the total current passes 

through the galvanometer and the rest of the current passes through the shunt. This instrument is 

calibrated so as to read the total current directly in amperes and then it can be used as an 

ammeter. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.1: Conversion of galvanometer into ammeter 

 

Let S and G are the resistances of shunt and galvanometer respectively. Then, the above circuit 

implies that  

 SIIGI gg )(      (or)    











GS

S
II g . 

 

To study the performance of this unit, connect it in series with an ammeter, a battery and a 

rheostat as shown in Fig. 9.2. Adjust the rheostat for different currents and take the readings of 

the galvanometer and hence calculate the current. Suppose I = 1.5 A, G = 30  and Ig = 600 A, 

then the shunt resistance can be calculated by using the above equations as S = 0.012 . If 

suppose for current I = 1.5 A the galvanometer with this shunt S shows full deflection (30 

divisions), then the current/division (current sensitivity) is 1.5/30 = 0.05 A/div. Hence, by 

multiplying the readings of galvanometer by current sensitivity, the current can be obtained. 
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Fig. 9.2: Calibration of galvanometer to measure current 

 

Table 9.1: To calibrate the galvanometer to measure current 

 

                                                                                  Current Sensitivity = ……. A/div 

 

Ammeter 

 reading (A) 

Deflection in 

galvanometer  (div) 
Current (A) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

                   Ammeter reading  

 

Fig. 9.3: Ammeter reading .vs. Current 
 
(2) Conversion of galvanometer into voltmeter 
 

Suppose a galvanometer has a resistance of G ohms and that it makes a current of Ig amperes for 

full scale, then the maximum potential difference that the galvanometer can measure is IgG volts. 

If we want this galvanometer to be used to measure up to a voltage of, say V volts, we have to 

add a resistance R in series with G such that 

 (R+G) Ig = V     (or)      G
I

V
R

g















 . 

  
  
  
C

u
rr

en
t 



DDeeppaarrttmmeenntt  ooff  PPhhyyssiiccss                                            NNaattiioonnaall  IInnssttiittuuttee  ooff  TTeecchhnnoollooggyy,,  TTrriicchhyy  

  

 
30 

Suppose V = 1.5 Volts, G = 30  and Ig = 600 A, then the resistance to be connected in series 

with G can be calculated as R = 2470 . Now the galvanometer with this resistance in series 

becomes the voltmeter of desired range. 

 

To study the performance of this unit take a standard voltmeter and make a circuit as shown in 

Fig. 9.4. Adjusting the potential divider for various voltages as indicated by the voltmeter and 

take the readings of the converted galvanometer. If the galvanometer has 30 divisions for the 

voltage 1.5 V, then we the voltage sensitivity is 1.5/30 = 0.05 V/div. Hence, by multiplying the 

readings of galvanometer by voltage sensitivity, the voltage can be measured. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.4: Calibration of galvanometer to measure voltage 

 

Table 9.2: To calibrate the galvanometer to measure voltage 

                                                                                      

                                                                            Voltage Sensitivity = …….. V/div 

  

Voltmeter reading 

(volts) 

Deflection in 

galvanometer (div) 

Voltage 

(volts) 

 

 

 

  

 

Result 
 
Galvanometer is converted into an ammeter and  

a voltmeter. 

 

 

                                                                                                                      

 

                                                                                                            Voltmeter reading                                                                                                     

                                                                                                         

                                                                                          Fig. 9.5: Voltmeter reading .vs. Voltage  

     

 

 

V
o
lt

ag
e 
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10. SPECIFIC ROTATION OF A LIQUID – HALF SHADE POLARIMETER  
 

Aim 
 

 To determine the specific rotation of an optically active substance. 

 

Apparatus required 
 

Cane sugar/sugar solution (with different concentrations), polarimeter and solution tubes. 

 

Formula 
    

 Specific rotation,  
LC

S


       deg  cc/g dm 

 

where 

 

θ – angle of rotation (deg) 

L – length of polarimeter tube containing the sugar solution (dm) 

C – concentration of sugar solution (g/cc). 

 

Experimental Setup 
 

Polarimeter is an instrument which determines the angular rotation of plane of polarization of 

light by an optically active solution. The angle through which the plane polarized light is rotated 

depends on the thickness of the medium, concentration of solution, wavelength of light and 

temperature. Here we perform the experiment with sodium light at room temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.1: Polarimeter 
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Polarimeter consists of two prisms, a polarizer and an analyzer. Just behind the polarizer is the 

half wave plate of quartz and the other half wave plate of glass. Both the halves of the plate 

together give the full field of view. As shown in Fig. 10.1, the light from lens L passes through 

the polarizer N1. The plane polarized light falls on the wave plate where one half of the light 

passes through the quartz Q and the other half passes through the glass plate G. The vibrations 

of beam emerging out of glass will be along CD and the vibrations of beam emerging out of 

quartz will be along AB as shown in Fig. 10.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.2: Principle of specific rotation 

 

At this position, the field of view will be bright. If you further rotate the circular scale (with the 

vernier) clockwise, the plate on the right would become brighter increasingly with the rotation 

and the plate on the left would become darker in proportion respectively to the other plate. If you 

rotate the vernier anti-clockwise, the plate on the left would become brighter increasingly and 

the plate on the right would become darker in proportion respectively to the other plate. 

 

Procedure 
 

After completing the initial adjustments in the polarimeter instrument, adjust the vernier such 

that both the halves namely quartz and glass plates, remain equally bright. Measure the reading 

for this position as V1. Now a hollow glass tube of length 20 cm (2 dm) having a large diameter 

in the middle is filled with a sugar solution of known concentration and placed in between the 

polarizer N1 and the analyzer N2. The sugar solution in the cell, which is an optically active 

medium, would rotate the plane of vibration to the right (dextro-rotatory). When seen through 

the eye-piece, brightness in both the halves will not be same due to the rotation of plane of 

vibration caused by the sugar solution.  

 

The analyzer N2 is adjusted by rotating the vernier clockwise till the brightness in both the 

halves of the plates (full field of view) are equal. Note the reading in the vernier in this new 

position V2. The angle through which the analyzer is rotated gives the angle through which the 

plane of vibration of the incident beam has been rotated by the sugar solution. The experiment is 

repeated for various concentrations of sugar solution and the corresponding angles of rotation 

are determined. A graph is plotted between the concentration C and the angle of rotation , as in 

Fig. 10.3. Straight line of the graph indicates that the angle of rotation increases linearly with the 

concentration of sugar solution. From the tabulation the average specific rotation of the sugar 

solution is obtained. 
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C 

Fig. 10.3: Concentration .vs. angle of rotation 

 

 

Table 10.1: To find the specific rotation 

 

Least Count (LC) = …….       V1 = ……..  

  

 

S. No 

Concentration of sugar 

solution (gm/cc) 
V2 (deg) 

θ = V2 ~ V1 

(deg) LC
S


  

(deg cc/g dm) 

 

 

 

 

 

 

 

 

 

    

 

         Mean  S = …… deg cc/g dm 

           

Result 
 

Specific rotation of the sugar solution, S  =   …………  deg  cc/g dm 

 

 

* * * * *  

θ 
 


