I B.TECH. DEGREE

(PHYSICS)

SYLLABUS FOR CREDIT BASED CURRICULUM

(2008 - 2009)

DEPARTMENT OF PHYSICS

NATIONAL INSTITUTE OF TECHNOLOGY TIRUCHIRAPPALLI - 620015

NATIONAL INSTITUTE OF TECHNOLOGY TIRUCHIRAPPALLI – 620015

DEPARTMENT OF PHYSICS

SEMESTER I

				P (Periods)	-
PH101	Physics-I	2	0	3	3

SEMESTER II

PH102	Physics-II	3	0	3	4

PH101 PHYSICS - I

I Waves and Oscillations

Traveling wave in one dimension – wave equation – examples – simple harmonic motion – examples: simple pendulum, LC circuit – damped oscillation – forced oscillation and resonance – origin of refractive index – dispersion.

II Acoustics

Characteristics of musical sound – loudness – Weber-Fechner law – decibel – absorption coefficient – reverberation – reverberation time – Sabine's formula – acoustics of buildings – Ultrasonic production: Magnetostriction and piezoelectric methods – determination of velocity of ultrasonic waves (acoustic grating) – applications.

III Thermodynamics

Mole – ideal gas – heat capacity – exact differential – first law – Meyer's relation – isothermal and adiabatic processes – work done – second law – Carnot engine – Carnot's theorem – Kelvin's scale of temperature – Clausius' theorem and entropy – first law revisited – statistical interpretations of temperature and entropy.

IV Crystallography

Crystalline and amorphous solids – system of crystals – symmetry operation – Miller indices – atomic radius – coordination number – atomic packing factor calculation – X-ray diffraction – powder photograph method.

V Quantum Mechanics

Inadequacy of classical mechanics – wave and particle duality of radiation – de Broglie concept of matter waves – Heisenberg's uncertainty principle – Schrodinger's wave equation – interpretation of wave function – eigenvalues and eigenfunctions – superposition principle – particle confined in one dimensional infinite square well potential.

Text Books

- 1. Material Science, V. Rajendran and A. Marikani, Tata McGraw-Hill (2004).
- 2. Engineering Physics, M.N. Avadhanulu, S. Chand & Co. (2007).

References

- 1. Fundamentals of Physics, 6th Edition, D. Halliday, R. Resnick and J. Walker, John Wiley and Sons (2001).
- 2. Waves Berkeley Physics Course Vol. 3, F.S. Crawford Jr., Tata McCraw-Hill (2008).
- 3. Optics, 3rd edition, A. Ghatak, Tata McGraw-Hill (2005).

Lab Experiments

- 1. Torsional pendulum
- 2. Sonometer Frequency of fork.
- 3. Measurement of temperature using thermocouple
- 4. Thermal conductivity Lee's disc method
- 5. Half shade polarimeter determination of specific rotatory power
- 6. Determination of dispersive power of prism
- 7. Conversion of Galvanometer into ammeter and voltmeter

Reference

1. Physics Laboratory Manual, Department of Physics, NITT.

* * * * *

PH102 PHYSICS - II

I Lasers and Fiber Optics

Spontaneous and stimulated emissions – Einstein's coefficients – population inversion and lasing action – coherence – properties and types of lasers – applications – Fermat's principle and Snell's law – optical fiber – numerical aperture – types of fibers – fiber optics communication principle – fiber optic sensors.

II Conductors, Dielectrics and Magnetic Materials

Free electron theory (classical and quantum) – Fermi-Dirac statistics – band theory of solids – – dielectrics – types of polarization – internal field and Claussius-Mosotti equation – ferroelectric materials – magnetic materials – types and properties – domain theory – hard and soft magnetic materials – application – superconductivity and types – Meissner effect – high temperature superconductors – applications.

III Advanced Materials

Liquid crystals – types – application as display devices – photonic crystals – nanomaterials (one, two and three dimensional) – physical properties and applications.

IV Materials Evaluation

Ultrasonic inspection – pulse echo method – liquid penetration technique – magnetic particle inspection – radiography – thermography – types of spectra – IR, UV and Visible spectroscopy – Raman spectra – NMR technique – applications.

V Electrodynamics

Coulomb's law for distribution of charges – polarization and Gauss's law – electric current and equation of continuity – magnetic induction and Lorentz force – steady current and Biot-Savart law – Ampere's law – magnetization and magnetic intensity – Faraday's law of induction – generalization of Ampere's law – Maxwell's equation – electromagnetic wave equation – propagation of EM waves in free space.

Text Books

- 1. Material Science, V. Rajendran and A. Marikani, Tata McGraw-Hill (2004).
- 2. Engineering Physics, M.N. Avadhanulu, S. Chand & Co. (2007).

References

- 1. Electricity and Magnetism Berkeley Physics Course Vol. 2, E.M. Purcell, Tata McCraw-Hill (2008).
- 2. Foundations of Electromagnetic Theory, 3rd edition, J.R. Reitz, F.J. Milford and R.W. Christy, Narosa (1979).

Lab Experiments

- 1. Determination of thickness of a thin wire Air wedge
- 2. Determination of wavelength of mercury spectrum using Grating
- 3. Determination of Optical absorption coefficient of materials using laser
- 4. Determination of Numerical aperture of an optical fiber
- 5. (i) Determination of wavelength of laser using diffraction grating (ii) Characteristics of light dependent resistor (LDR)
- 6. Calibration of Voltmeter Potentiometer
- 7. Nondestructive testing by Ultrasonic inspection
- 8. Field along the axis of a Circular coil

Reference

1. Physics Laboratory Manual, Department of Physics, NITT.

* * * * *