QUANTUM MECHANICS

- 1. Find the de Broglie wavelength of (a) 46 g golf ball with velocity 30 m/s and (b) an electron with velocity 10^7 m/s. [(a) 4.8×10^{-34} m, (b) 73Å]
- 2. If the kinetic energy of an electron is 54 eV, what is the wavelength associated with it?

[1.66Å]

- 3. A measurement establishes the position of a proton with an accuracy of ± 10 Å. Find the uncertainty in the proton's position 1 sec later. Assume the velocity of proton is much smaller compared to *c*. [$\Delta x \ge 3.15 \text{ km}$]
- 4. The radius of a hydrogen atom is $5.3 \times 10^{-11} m$. Use the uncertainty principle to estimate the minimum energy an electron can have in this atom. Compare your result with lowest energy level of the hydrogen atom. $[KE_{min} = 3.375 \ eV, E_0 = 13.6 \ eV]$
- Calculate the de Broglie wavelength of an electron accelerated by the potential difference of 150 V.
- 6. The position of an electron is located within a distance of 0.1 Å. What is the uncertainty in measuring the momentum of the electron?

 $[0.527 \times 10^{-23} kg m/s]$

- An electron is in a one-dimensional box of 0.1 nm, which is of the order of magnitude of atomic dimensions. Find the permitted energies. [37.5 n² eV]
- 8. A 10 g of marble is in a box 10cm across. Find its permitted energies. $[5.5 \times 10^{-64} n^2]$
- 9. A proton in a 1D box has the energy of 400 keV in its first excited state. How wide the box is? $[45.32 \times 10^{-15} \text{ m}]$
- 10. The position and momentum of a 1 keV electron are simultaneously determined. If its position is located within 0.1nm, what is the percentage of minimum uncertainty in its momentum? [3.1%]
- 11. The de Broglie wavelength of a particle moving with 10 % of the velocity of light and that of proton moving with 20 % of the velocity of light are equal. Calculate the wavelength and mass of the particle. $[6.6 \times 10^{-15} \text{ m}, 3.34 \times 10^{-27} \text{ Kg}]$
- 12. An electron is confined to move between two rigid walls separated by $10^{-9} m$. Find the de Broglie wavelengths representing first three allowed energy states and the corresponding energies. [2,1,2/3 nm; 0.4,1.5,3.4 eV]

- 13. If a 15 g of marble moving with a speed of $1/3 \text{ ms}^{-1}$ is confined over a distance of 12 cm, find the total number of energy levels. What do you infer from the result? [1.81×10^{30}]
- 14. If $\psi = A \exp(-kx)$ for $0 < x < \infty$ and $\psi = 0$ for $-\infty < x < 0$, find *A* in terms of *k* and evaluate the probability of the particle lying in the region $\frac{2}{k} < x < \frac{3}{k}$. [$\sqrt{2k}$, 0.016]
- 15. Find the average momentum of a particle, confined to a one dimensional box of length L, in ground state. [0]

* * * * *