QUANTUM MECHANICS

1. Find the de Broglie wavelength of (a) 46 g golf ball with velocity $30 \mathrm{~m} / \mathrm{s}$ and (b) an electron with velocity $10^{7} \mathrm{~m} / \mathrm{s}$.
[(a) $4.8 \times 10^{-34} \mathrm{~m}$, (b) 73太́]
2. If the kinetic energy of an electron is 54 eV , what is the wavelength associated with it?
3. A measurement establishes the position of a proton with an accuracy of $\pm 10 \AA$. Find the uncertainty in the proton's position 1 sec later. Assume the velocity of proton is much smaller compared to c.
$[\Delta x \geq 3.15 \mathrm{~km}]$
4. The radius of a hydrogen atom is $5.3 \times 10^{-11} \mathrm{~m}$. Use the uncertainty principle to estimate the minimum energy an electron can have in this atom. Compare your result with lowest energy level of the hydrogen atom.
$\left[K E_{\min }=3.375 \mathrm{eV}, E_{0}=13.6 \mathrm{eV}\right]$
5. Calculate the de Broglie wavelength of an electron accelerated by the potential difference of 150 V .
6. The position of an electron is located within a distance of $0.1 \AA$. What is the uncertainty in measuring the momentum of the electron?

$$
\left[0.527 \times 10^{-23} \mathrm{~kg} \mathrm{~m} / \mathrm{s}\right]
$$

7. An electron is in a one-dimensional box of 0.1 nm , which is of the order of magnitude of atomic dimensions. Find the permitted energies.
[$37.5 \mathrm{n}^{2} \mathrm{eV}$]
8. A 10 g of marble is in a box 10 cm across. Find its permitted energies.
$\left[5.5 \times 10^{-64} n^{2}\right]$
9. A proton in a 1 D box has the energy of 400 keV in its first excited state. How wide the box is? $\left[45.32 \times 10^{-15} \mathrm{~m}\right.$]
10. The position and momentum of a 1 keV electron are simultaneously determined. If its position is located within 0.1 nm , what is the percentage of minimum uncertainty in its momentum?
[3.1\%]
11. The de Broglie wavelength of a particle moving with 10% of the velocity of light and that of proton moving with 20% of the velocity of light are equal. Calculate the wavelength and mass of the particle.
$\left[6.6 \times 10^{-15} \mathrm{~m}, 3.34 \times 10^{-27} \mathrm{Kg}\right]$
12. An electron is confined to move between two rigid walls separated by $10^{-9} \mathrm{~m}$. Find the de Broglie wavelengths representing first three allowed energy states and the corresponding energies.

$$
[2,1,2 / 3 \mathrm{~nm} ; 0.4,1.5,3.4 \mathrm{eV}]
$$

13. If a 15 g of marble moving with a speed of $1 / 3 \mathrm{~ms}^{-1}$ is confined over a distance of 12 cm , find the total number of energy levels. What do you infer from the result?
14. If $\psi=A \exp (-k x)$ for $0<x<\infty$ and $\psi=0$ for $-\infty<x<0$, find A in terms of k and evaluate the probability of the particle lying in the region $\frac{2}{k}<x<\frac{3}{k}$. [$\sqrt{2 k}, 0.016]$
15. Find the average momentum of a particle, confined to a one dimensional box of length L, in ground state.
