NUCLEAR PHYSICS

1. Find the energy equivalent of an electron, proton and a neutron in the scale of eV .
2. Find the activity of 5 mg of radon ${ }^{222} \mathrm{Rn}_{86}$, if the half life is 3.8 days. What is the activity after one week?
3. A piece of wood from the ruins of an ancient dwelling was found to have a ${ }^{14} \mathrm{C}$ activity of 13 disintegrations per minute per gram of its carbon content. The ${ }^{14} \mathrm{C}$ activity of living wood is 16 disintegration per minute per gram. How long ago did the tree die from which the wood sample came?
4. A rock sample contains 1 mg of ${ }^{206} \mathrm{~Pb}$ and 4 mg of ${ }^{238} \mathrm{U}$, whose half-life is 4.47 By . How long ago was the rock formed?
5. If the radius of a nucleus is of the order $10^{-14} \mathrm{~m}$, using uncertainty principle, show that neutrons and protons do not posses any significant kinetic energy.
6. A nuclear reactor is generating energy at the rate of 320 MW . Calculate the number of U^{235} atoms undergoing the fission process, if the average energy released in each fission is 200 MeV .
7. A city requires on average 200 MW of power per day which is being generated by U^{235}. The efficiency of the reactor is 30%. Calculate the amount of U^{235} required per day. Given the energy released per fission is 200 MeV .
8. Calculated the time-period required for 10% of thorium to disintegrate. Given the half-life of thorium is 1.4×10^{10} years.
9. The half period of two isotopes A and B of a radioactive substance are 2.31×10^{9} and 3.465×10^{8} years respectively. Assuming that at the time of formation of each, A and B were in the ratio of 1:2, calculate the age of earth when their present ratio is 98:2.
10. A carbon specimen found in a cave contained $1 / 8$ as much C^{14} as an equal amount of carbon in living matter. Calculate the approximate age of the specimen. Half-life period of C^{14} is 5568 years.
11. Which of the following reactions are allowed under the conservation of charge and baryon number?
a. $\pi^{+}+n \rightarrow \Lambda^{0}+K^{+}$
b. $\pi^{+}+n \rightarrow K^{0}+K^{+}$
c. $\pi^{-}+p \rightarrow \Lambda^{0}+K^{0}$
d. $p+\gamma \rightarrow p+\pi^{0}$
e. $p+p \rightarrow K^{+}+\Sigma^{+}$
f. $\Lambda^{0} \rightarrow K^{+}+K^{-}$

$$
* * * *
$$

