NUCLEAR PHYSICS

- 1. Find the energy equivalent of an electron, proton and a neutron in the scale of eV.
- 2. Find the activity of 5 mg of radon 222 Rn₈₆, if the half life is 3.8 days. What is the activity after one week?
- 3. A piece of wood from the ruins of an ancient dwelling was found to have a ¹⁴C activity of 13 disintegrations per minute per gram of its carbon content. The ¹⁴C activity of living wood is 16 disintegration per minute per gram. How long ago did the tree die from which the wood sample came?
- 4. A rock sample contains 1 mg of ²⁰⁶Pb and 4 mg of ²³⁸U, whose half-life is 4.47 By. How long ago was the rock formed?
- 5. If the radius of a nucleus is of the order 10^{-14} m, using uncertainty principle, show that neutrons and protons do not posses any significant kinetic energy.
- 6. A nuclear reactor is generating energy at the rate of 320 MW. Calculate the number of U^{235} atoms undergoing the fission process, if the average energy released in each fission is 200 MeV.
- 7. A city requires on average 200 MW of power per day which is being generated by U²³⁵. The efficiency of the reactor is 30%. Calculate the amount of U²³⁵ required per day. Given the energy released per fission is 200 MeV.
- 8. Calculated the time-period required for 10% of thorium to disintegrate. Given the half-life of thorium is 1.4×10^{10} years.
- 9. The half period of two isotopes A and B of a radioactive substance are 2.31×10^9 and 3.465×10^8 years respectively. Assuming that at the time of formation of each, A and B were in the ratio of 1:2, calculate the age of earth when their present ratio is 98:2.
- 10. A carbon specimen found in a cave contained 1/8 as much C^{14} as an equal amount of carbon in living matter. Calculate the approximate age of the specimen. Half-life period of C^{14} is 5568 years.
- 11. Which of the following reactions are allowed under the conservation of charge and baryon number?
 - a. $\pi^+ + n \rightarrow \Lambda^0 + K^+$ b. $\pi^+ + n \rightarrow K^0 + K^+$ c. $\pi^- + p \rightarrow \Lambda^0 + K^0$ d. $p + \gamma \rightarrow p + \pi^0$ e. $p + p \rightarrow K^+ + \Sigma^+$ f. $\Lambda^0 \rightarrow K^+ + K^-$

* * * *