LASER

1. Using Einstein's theory, check the possibility of amplification of radiation in optical region (say 5000 Á at 300K. [amplification not possible]
2. Show that, under thermal equilibrium, laser action is not possible in visible region at room temperature. At what temperature the laser action is possible and is it realizable? [Not realizable]
3. When in thermal equilibrium at $\mathrm{T}=300 \mathrm{~K}$, population ratio of upper level to lower level of a twolevel atomic system is $1 / e$. Calculate the frequency of this transition. In what region of the EM spectrum does this frequency fall? [$6248 \mathrm{GHz}, \mathrm{IR}$ region]
4. What fraction of sodium atom is in the first excited state in a sodium vapour lamp at a temperature of $300^{\circ} \mathrm{C}$? [3.155×10^{-19}]
5. The population ratio of higher to lower energy level is 1.059×10^{-30}. Find the wavelength of light emitted at 330 K. [632 nm]
6. Consider a transition between a metastable state E_{3} and an energy state $\mathrm{E}_{2}=0.4 \times 10^{-19} \mathrm{~J}$, which is just above the ground state. If the emission is at $1.1 \mu \mathrm{~m}$, find the energy of metastable state.

$$
\left[2.2 \times 10^{-19} \mathrm{~J}\right]
$$

7. A He-Ne laser of wavelength 6328 Á is emitting a beam with an average power of 4.5 mW . Find the number of photons emitted per second by the laser. [1.46 $\times 10^{16}$]
8. A He-Ne laser of wavelength 632.8 nm , focused on a circle of radius 2 mm , is emitting $9.55 \times$ 10^{17} photons/minute. Compare the intensity of the laser with the intensity of a 100 W bulb on a person standing 10 m away from the bulb. $\left[\mathrm{I}_{\mathrm{L}}=397.8 \mathrm{Wm}^{-2}, \mathrm{I}_{\mathrm{B}}=0.07957 \mathrm{Wm}^{-2}, \mathrm{I}_{\mathrm{L}} / \mathrm{I}_{\mathrm{B}}=4999\right]$
9. A semiconductor laser of wavelength $6500 \AA$ Á having power of 1 mW is focused on a circle of radius 2 mm . Find the intensity of the focused beam. Compare this with intensity of 80 W bulb on a person standing 5 m away. $\left[\mathrm{I}_{\mathrm{L}}=79.5 \mathrm{Wm}^{-2}, \mathrm{I}_{\mathrm{B}}=0.25 \mathrm{Wm}^{-2}, \mathrm{I}_{\mathrm{L}} / \mathrm{I}_{\mathrm{B}}=318\right]$
10. A He-Ne laser emits light at a wavelength of 632.8 nm and has an output power of 2.3 mW . How many photons are emitted in one minute by this laser? [4.39 $\times 10^{17}$]

$$
* * * *
$$

