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A numerical model based on the finite volume scheme
is proposed to approximate the binary breakage
problems. Initially, it is considered that the particle
fragments are characterized by a single property, i.e.
particle’s volume. We then investigate the extension
of the proposed model for solving breakage problems
considering two properties of particles. The efficiency
to estimate the different moments with good accuracy
and simple extension for multi-variable problems are
the key features of the proposed method. Moreover,
the mathematical convergence analysis is performed
for one-dimensional problems. All mathematical
findings and numerical results are validated over
several test problems. For numerical validation,
we propose the extension of Bourgade & Filbet
(2008 Math. Comput. 77, 851-882. (doi:10.1090/S0025-
5718-07-02054-6)) model for solving two-dimensional
pure breakage problems. In this aspect, numerical
treatment of the two-dimensional binary breakage
models using finite volume methods can be treated to
be the first instance in the literature.

1. Introduction

Events of particle fragmentation (or breakage) occur in
several industrial sectors such as chemical engineering
[1-4], food processing [5-7], pharmaceutical [8-10],
communition in mineral processing [11-14], etc., and,
in different natural and astrophysical phenomenons
[15-17]. Therefore, theoretical researchers have gained
interest to discuss on different model equations involving
particle breakage [18-22].

The mathematical equations representing different
particulate processes are well known in the literature
as the population balance equations (PBEs). Here, we
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consider the following mathematical model representing particle fragmentation in one
dimension [23];

X

=2 " Py =00y — (o) | Fx—y,9)dy, (1.1)

X

on(x, t)
ot

along with the initial data
n(x,0)=np(x)>0, forallx=>0. (1.2)

In equation (1.1), n(x, t)(>0) denotes the number density of particles of volume x(>0) at time
t(>0). The fragmentation kernel F(x, y) represents particle breakage rate of volume (x + y) into x
and y. In general, it is considered that F is a non-negative, symmetric function of x and y. The
first integral on the right-hand side of (1.1) is called the birth term, as it represents the inclusion
of particles of volume x in the system due to the breakage of bigger particles. On the other
hand, the second integral corresponds to the removal (or exclusion) of particles of volume x
due to its breakage into smaller fragments (x —y) and y. Therefore, it is referred as the death
term. As F is symmetric, either of the resulting fragments in the birth term can form a particle
of volume x. Therefore, the factor 2 is introduced to account those particle formations. Without
loss of generality, all the concerned quantities in equation (1.1) are considered in dimensionless
form [24].

In general, different integral properties of the density function play important roles for the
PBEs, as some of them correspond to the physical properties such as total number and volume.
Therefore, efficient estimation of these moments is required while approximating the PBEs. In this
regard, the pth moment of the density function is defined as

My(t) = J:o ¥ulx, dxy p=1,2,... (1.3)

In particular, the zeroth and the first moments are respectively proportional to the total number
and total volume of the particles present in the system. From (1.1) and (1.3), by simple change in
the order of integrations, it can be obtained that
dMp(t) _
dt

Joo n(x, t) Jx[Zy” —xP]F(x —y,y) dy dx, (1.4)
0 0

when all the integrals exist finitely [23]. Therefore for p =1, using the symmetric nature of F, we

obtain
dMa () _ 0

dt
Hence, a system is said to obey the wvolume conservation laws if it satisfies the relation (1.5).
Furthermore, the temporal change of the zeroth moment (p = 0) is obtained as follows:

dMo(t)
dr

(1.5)

J'oo n(x, t) Jx F(x —y,y)dydx. (1.6)
0 0

However, equation (1.6) can be written in a closed form of higher moments for some suitable
choice of F(x,y). Thus from the physical aspect, an efficient numerical model approximating the
PBEs is expected to predict the total volume and the total number of the particles in the system
with good accuracy. This notion when expressed mathematically, we say that an efficient scheme
should obey relations (1.5) and (1.6).

Another form of the PBEs, known as the volume conservative formulation, is widely available in
the literature [25,26]. In particular, the conservative formulation of breakage equations reads as

xon(x, t) 0
at  dx

X oo
J J uF(u, v)n(u + v)dv du] . (1.7)
0 Jx—u

Using Leibniz’s rule for differentiation under the integral sign and symmetric behaviour of F, we
can easily show that relations (1.7) and (1.1) are equivalent mathematical expressions. However,
(1.7) has gained importance because the schemes originated from it possess the natural feature to

obey volume conservation laws (1.5).
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In several industrial sectors such as communition in mineral processing industries and
chemical plants, the multi-dimensional fragmentation models are used considerably [12,27,
28]. Here, multi-dimensional fragmentation problems indicate that the particle fragments are
described by more than one internal variables. In this regard, several authors have discussed
upon the physical aspect of the solutions and their different moments for the multi-dimensional
problems [29-32]. A rigorous study on the phase transition states that under certain kinetic rate,
particles of nearly zero volume are produced, thus leading to the break down of the conservative
nature of the system. However, in several industrial applications, like during the separation
of minerals from their ores, the break down of conservative nature cannot be entertained as
it increases the process cost considerably. In this article, we concentrate our study towards the
kinetic kernels which obeys the conservative nature of the physical system, and aim to develop
a robust numerical scheme which approximates different physical properties of the system
efficiently.

Many numerical schemes dealing with the discretization of (1.1) or (1.7) have been proposed
in recent years, and it would not be possible to give an exhaustive list. In this regard, the sectional
methods in [33-35], moment methods in [36,37], finite-element methods in [38—40], finite volume
methods in [25,26,41-44] have gathered interest of the researchers. In particular, approximations
based on finite volume methods have gained importance as they possess simple extension for
solving higher dimensional problems [42,45]. There are several evidences in the literature where
the development of finite volume schemes approximating pure aggregation problems [25,42,45-
49] has been discussed. However, the approximation of multi-dimensional breakage problems
using finite volume methods has not been discussed in the literature. Our intention is to obtain a
numerical model for solving both one- and two-dimensional breakage problems.

In this paper, we propose a finite volume scheme for solving one-dimensional fragmentation
equations and extend it for the two-dimensional problems. The new model is derived from the
classical equation given by (1.1). Therefore, it has simple mathematical formulation and is robust
to apply on both uniform and non-uniform grids. A detailed convergence analysis of the one-
dimensional scheme is also performed. To compare the efficiency of our proposed model, we
consider the standard one-dimensional scheme of [26] as our reference model. Because the scheme
in [26] does not possess its multi-dimensional extension for solving fragmentation problems, we
introduce its two-dimensional extension in order to validate our proposed scheme numerically.

The article is organized as follows. Section 2, contains the derivation of the discrete models. In
§3, we discuss the mathematical convergence analysis of the one-dimensional model. Extension
of [26] model in two dimensions along with the numerical verification of the proposed model is
given in §4.

2. New formulations

(@) One-dimensional model

The volume variable x in equation (1.1) ranges over (0, 00). In order to apply a numerical method,
we need to fix a finite range of the computational domain. Let for some finite R(> 0), all the
particles having volume range (0, R] take part in the kinetic interactions. Also, consider 0 <t <
T < co. Hence, the truncated equation (1.1) reads as

d
n(x, t) _
at

R X
|| Py =m0y =t | Fex—y,9)dy, 1)

along with the initial data
n(x,0)=np(x) >0, x€(0,R].

Let (0, R] =: D is discretized into I(< 0o0) sub-intervals A;, where

Ai= i1, %12l 1=1,2,...,1
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with X172 = 0, X[41/2 = R and Ax;:= Xit1/2 — Xi-1/2- Let the mid—point of each A;, ie. x;:=
(xiy1/2 + xi—1/2)/2, represents the particle size of that cell and we call it pivot or grid point of the
cell. Furthermore, let Ax := max; Ax;, §x := min; Ax; and there exists a constant K such that

Ax
% <K. (2.2)

Let N;(t) denote the number of particles in the ith cell, i.e.

Xi+1/2
N;(t) := J n(x, t) dx.

Xi-1/2

For notational convenience, we simply drop the argument ¢ from Nj;(t) and write it as Nj. In this
regard, it should not be mistaken that N; is independent of t. Therefore, integrating (2.1) over each
A;, we obtain the following system of equations:

dN;
dtl =B;—D;, i=1,2,...,1,
with the initial data,
. Xit1/2
N;n = NZ(O) = J no(x) d.x
Xi-1/2

and
Xit1/2

Xit12 (R
Bi:= ZJ J F(x,y —x)n(y,t)dydx, D;:= J

Xi-12 JX Xi-1/2

X

n(x, t)J Flx —y,y)dydx.
0

Changing the order of integration, B; is written as

Xiv1/2 (Y R Xi+1/2
B; :2J J Flx,y —x)n(y, t)dxdy + ZJ J Flx,y — x)n(y, t)dxdy

Xi-1/2 Y Xi-1/2 Xit1/2 JXi-1/2
Xit1/2 (Y [ X172 (Xit1/2

= ZJ J F(x,y — x)n(y,t)dxdy + 2 Z J J F(x,y — x)n(y, t) dxdy.
Xi—172 JXi-172 k=i+1 Xk—1/2 JXi-1/2

Applying quadrature formulae to the outer integrals, the right-hand side of B; reads as

Xi I Xit1/2
Bi=2N,-J F(x; — x,x)dx+2 Z NkJ F(xx — x,x) dx + O(Ax%)
Xi-1/2 k=i+1 Xi-1/2
4 Pl 5
=ZZNkJ F(xk—x,x)dx+(’)<Ax ) (2.3)
k=i Xi-1/2

Here, we denote

i X, when k=1,
P =

Xit1/2, otherwise.
Similarly, applying quadrature formula to the outer integrals of D;, we obtain
Xi
Di=Ni | "Fesi =y 1) dy + O(ax) 2.4)

Our aim is to obtain a numerical scheme which obeys volume-conservative laws and, predicts the
total particle number with good accuracy. Therefore, we propose the following numerical scheme
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to serve the purpose.

N I i
le‘ b Pk
dt =2ZwkaJ

k=i Xi-1/2

Xi
F(xp — x,x)dx — waiJ F(x; — x,x)dx, (2.5)
0

where Nj is the numerical approximation of N; and a)z, a)? are the weight functions given by

b Jof xF(xg — x, x) dx
(l)k =

= -
Z}‘zl LCLM (2x — xj)F(xg — x, x) dx

(2.6)

and

b~i o (P ,
e ;] ijl Xj fx/’;m F(x; — x,x)dx 27)
! o xF(x; — x,x)dx

forallk,i=2,3,...,] along with a)ll’ = a)‘f =1.

It is to be noted that the weight functions wz, “’Z are the key features of the proposed model
(2.5), as they play an important role to control the accuracy of the desired moments. We now
proceed to verify our claim by evaluating the discrete first and zeroth moments obtained from
the scheme (2.5). Let us multiply both sides of (2.5) by x; and take sum over i to obtain

I I k k
d ~ . Pi Xk
I inN,- = ZNk Zwi’ E X; J F(xp — x,x)dx — w,‘ka Jo F(xp — x,x)dx
i=1 k=1 i=1

Xi-1/2

Recalling the weight a)llé (2.6) and using the following relation:

X Xk
Xk . F(xp —x,x)dx=2 Jo xF(xp — x,x)dx (2.8)
from [50], we obtain
d <& . o0 Pl koo
I inNi =2 ZNkw;lZ in Lil F(xp — x,x)dx — in J'x; F(xp —x,x)dx | =0,
i=1 k=1 | i=1 i-1/2 i=1 i-1/2

for all Ni and F. Thus, system (2.5) obeys volume conservation laws.
Now taking sum over i on both sides of (2.5), the discrete zeroth moment is written as

Recalling the weights wi and a)]’f, the factor (Zw}% - a)g) is simplified into

b k k

w Xk P
200 — o = k ZJ XF(x — x,x)dx — x'J F(xp — x,x)dx
ko Tk o xF(x — x,x)dx | Jo ; L P
k k
1 Pj
ZJ ! (2x — x))F(xg — x, x)dx = 1.

= %
k Pj : Xj_
Zj:l J‘X;fl/z (Zx - xj)F(xk - X x) dx =177 2

Hence, we obtain
7 ZNi = ZN,J F(x; — x, x) dx.

It is to be noted that the right-hand side of the above relation is analogous to its continuous
counterpart given in (1.6). Therefore, the scheme (2.5) is expected to predict the zeroth moment
with high accuracy. This claim is validated in §4 over some test problems.
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(b) Two-dimensional model

We now introduce the finite volume approximation of the fragmentation problems by considering
two internal variables in the distribution function. Basically, we will introduce the two-
dimensional extension of the new scheme (2.5), which conserves the total volume and predicts
the particle number with high accuracy.

Let n(x,y,t) be the number density of particles having properties x, y at time #(>0). Also
let F(x,y|x',y')(=0) denote the kinetic rate at which particles with properties (x,y) and (X', 1)
are produced during the breakage event of larger particles with properties (x' + x) and (' + y).
Referring to equation (1.1), the two-dimensional form of classical breakage equation (1.1) is
written as

o roo
dnx.y,H =2J J' F(X'—x,y —ylx,ynE,y, 1) dy dx’
ot <y
X (Y
—n(x,y, t)J J Flx—x,y—vy |x,y)dy dx, (2.9)
0Jo

along with initial condition
n(x,y,0)=np(x,y) >0 forallx,y>0.

Furthermore, the moments of the density function n(x, y, t) are given by

o0 roo L.
M;j(t) = J J X'yn(x,y, Hdydx i,j=1,2,....
0 Jo

Like the one-dimensional problem, the zeroth moment Mg o(t) corresponds to the total number of
particles and, the temporal change of zeroth moment can be obtained as
dMoo(t)

00 (00 Xy
— J J n(x,y, t)J J Fix—x,y—y |x,y)dy dx. (2.10)
dt 0 Jo 0Jo

However, in this case, there exists two first-order moments M o(f) and My (). Here, My o(t)
corresponds to the total volume of particles with property x. Similar explanation holds for Mg 1(¢).
Thus, for a volume-conservative system, we should have

< [M1of0) + Moa (9] =0, 2.11)

Let us consider, 0 <x <Ry <00, 0 <y <Ry < oo and 0 <t <T. Therefore, the truncated form of
equation (2.9) is written as

an(x,y,t) B

Ry (R,
By 2J J F(x' —xy —ylx,ynE,y,t)dy dx’

x Jy
X (Y
—n(x,y, t)J J Fix—x,y—vy|x,y)dy dx.
0Jo

Let I and | be any positive integer. We now discretize the truncated domain (0, Rx] x (0, Ry] in
finite number of rectangular cells C;; := (x;_1/2, Xi11/2] X (Yj—1/2,Yj+1/2], where 1 <i<[, 1<j<]
with x12 =y1/2=0, x1312 =Ry and yj;12 =Ry. The centre of each cell Cij that is, (xi,y)) is
considered to be the pivot. Let i; ; be the numerical approximation of the average density function
in the rectangle C;; and we denote Ni,]- = ﬁi,ij,-Ay]-. Proceeding in a similar manner as done for

the one-dimensional problem, we write the two-dimensional extension of the proposed model
(2.5) as

ang; L, o
1 =ZZZwZINk,lJ ‘ J I Flxy —x,y1 —ylx,y)dydx
dt k=i I=j ’ Xi-1/2 JYj-1/2
q3 Xi (Yj
— o} :Nj; Flxi —x,y; —ylx,y)dydx. (2.12)
77 o Jo

L¥SOLL0T 0L ¥ 205 4 201 BioBuiysiqndiraposieforredsy


http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on January 17, 2018

Here, the weight functions are given by

Xk (Ui
(x+FGx —x, 1 —ylxy)dydx
of = 2 0, (2.13)

Y Y 1fx, " J9 12 @x + 2y — x; — y)F( — %,y — y | x,y) dy dx

and

q
LY Z] 1(xz +y) [0 i [ B = %,y — y 1 x,y) dy dx o1p
W= .
ki (x +yF(x —x, 1 —ylx,y)dydx

forallk=1,2,...,I,1=1,2,...,] with a)ll’ 1= a)‘li ; = 1. In the above relations, we denote

Yj, whenl=j,

Yjy1/2, otherwise.

Proposition 2.1. The numerical scheme (2.12) obeys volume conservation laws and, the zeroth
numerical moment follows the discrete analogy of relation (2.10).

Proof. We first calculate the time derivative of the sum of first-order discrete moments.
Therefore, multiplying both sides of (2.12) with (x; +y;) and taking sum over i and j, we can
write

I ] I ] ko1 k 1
d . . vi9
T > Z X+ YN =23 > ol Nt YD (xi+y)) J J " POk —xy—ylx,y)dydx
i=1 j=1 k=1 I=1 i=1 j=1 Xi-1/2 Y12
I ]

1
—ZZwZ,,Nk,(xHyz)J j F — %,y — v 1 %,) dy dx.

k=11=1

Substituting wf ! and using the relation

Xk (Y1 Xk (Y1
(xk+yz>j0 L F(xk—xryl—y|x/y)d}/dX=2L L (¢ + E(e — v, 1 — y | %, y) dy dx,

to the second term in the right-hand side, we obtain

g A J ) 1] ok Pk
SO ICRTIIED RN 3 ee]

qt
J ! Flxy —x,y1 —ylx,y)dydx
Yi-12

i=1 j=1 k=1 I=1 i=1 j=1 Xio1/2
1] ko1 Pk d
D ICTE 3 S URTY i TSP e
k=1 I=1 i=1 j=1 Xiz172 JYj-172
= O,

for all Nk,l and F. Therefore, system (2.12) obeys volume conservation laws.
Next, we calculate the temporal change of discrete zeroth moment. Therefore,

N
ZZZZwk,sz,zJ J F(xy —x,y; —y|x,y)dydx

i=1 j=1 k=i I=j Yi-172 JYj-172

I ] A Xy
’ZZ‘”?,;'NI‘JJ J F(xi —x,yj —ylx,y)dy dx.
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Proceeding in a manner similar to the previous one and using the weight functions given in (2.12),
we shall obtain

i (Yi

SN AU T
%ZZNi,j:ZZNi,jJOJ' Flxj —x,x|y; —y,y)dydx.

Thus, our claim is justified. u

3. Convergence analysis for one-dimensional model

In this part of our study, we prove that when the fragmentation kernel F satisfies certain regularity
conditions over a closed interval, the proposed one-dimensional scheme (2.5) exhibits a second-
order convergence rate, irrespective of the meshes used in discretization.

Let us denote

I
Bi :=2waNkJ F(xp — x,x)dx (3.1)

and

A Xk
Dj:=w’N; J F(x; — x,x) dx. (32)
0

Therefore, the one-dimensional semi-discrete model is written as

dN;

& =B,—-D;, i=12,...,1,

with the initial condition

N;(0) = Ny(0).

Let N= [Nl,Nz,. .. ,NI]T denote the numerical solutions in vector form. Therefore, the above
formulations take the following spatially discretized vector form in R’

AN oo o e
5 = BN = DN) = J(N) (3.3)
and N(O):Nin

where B, D € R! are the functions of N whose ith components are Bi(N) and Di(N), respectively
and J(N) =[J1(N1),J2(N2), - .., Ji(ND)]-

In this part of our study, we shall use definitions 3.1-3.3 and theorems 3.1-3.2 listed in [50] to
establish the proposed results. Let the discrete L' norm on R/ be defined as

1
ING)I =D INi(®)]- (3.4)

i=1

Let J(N) be the vector function obtained by replacing the numerical solution N with the true
solution N := [Ny, Ny, ..., N;]T.

We now proceed to establish the stability of our proposed one-dimensional scheme (2.5) by
examining the Lipschitz condition.

Proposition 3.1. Consider that F(x,y) € C2([0,R] x [0, R]). Then j(N) satisfies Lipschitz condition for
all N, N € R, with the Lipschitz constant being independent of Ax.
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Proof. We calculate the norm ||J(N) — ](N)H.

. ! . r A P} .
IO =0l = 3 ) ~ S <23 " of [ Flai ) dviNy - K

i=1 i=1 k=i Y12

+ZwJ F(x; — x,x)dx|N; — N|

It is considered that w%’ = a)f = 0. Therefore, changing the order of the summation of the first term,

the above relation is re-written as

N - | —szkwk ~ Ryl Zf Fxi — %,%) dx

—1 Xi-1/2

:2T1
I

Xk N
+ Zwl‘f L F(x; — x,x) dx|Ny — Ng| .
k=2

::Tz

Let us first consider the term T1. Recalling the weight a)z (2.6), we obtain

wz of xF(x — x,x) dx _ Zk f X /2 x; — x)F(xp — x,x) dx .
1 fx 12X = X)) F(x — x, X) dx 1 fx 1, (2% = xi)Flx — x, %) dx

Now, F is continuous on [0, R] x [0, R]. Therefore, using mean value theorem, there exists &;,7; €
(x,-,l/z,p;‘) fori=1,2,...,1, such that

k k k
Pi 1
ZJ (i —0F(xe —x,x)dx < 5 > " Flxe — &, &) (pF — xic12)(xip1/2 — 1)
i=1 Xi-1/2 i—1
and
k  opk k
Pi P f
> (2x — x;)F(x — x,x) dx > > Fag — 13, m)(Pf — xic12) (P + xi—1/2 — 7).
i=1 Xi-1/2 i—1
Furthermore,
P Ax;,  wheni#k, P when i #k,
i —Xi—12=111 Xiv12 =P =11
P v 5 Axy, wheni=k, 12 = i EAxk’ wheni=k,
and
X, when i £k,
P +xicp—x=1{"

Xk—1/2, when i=k.
Therefore, using the natural convention that Ax; < Axy whenever i <k and condition (2.2), we get

2 &
o <14 12O Sl Pk =& 8) |, (A

< <1+ K +CK?,
2(Ax1)2 Y5 FCx — i i) 4(5x)?

where C is a constant independent of k and i. Next we consider the weight w,‘f (2.7). Using relation
(2.8), and the fact that x; <xj foralli=1,2,...,k, we get

k k k i
; ol 3 % fﬁ;im F(x — x,x) dx B 200 S5y x; [P F(xe —x,x) dx

Xi-1/2
ol = i—1// b

< Zwk.

of xF(x — x,x) dx B x [of F(xg — x,x) dx
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Therefore,

I - . I X R

T2§Zw,‘fJ F(xk—x,x)dx|Nk—Nk|§22w,’jJ F(xy — x,x)dx|Ng — Ni| =T1.
k=2 0 k=2 °

Now, using the above relations of T1 and T» and the continuity of F(x,y) over [0,R] x [0, R],

we can write

A ! N Xk
IIN) = 0 =T + T <23 obINy Rl | " Fov = 3,21
k=1

X I
<2 max U F(x—y,y)dy] [1+IC+CIC2]Z|Nk—Nk|

xe[0,R] | Jo )
<yIN-NJ,
where .
=2 F(x—y,y)dy | |1+ K+ CK?|,
ri=2mp ||, e [t o]
is a finite term independent of Ax. [ |

We now state and prove the consistency result of the proposed model.

Proposition 3.2. Suppose that F(x, y) € C*([0,R] x [0, R]). Then, the solution of the discretization (3.3)
is non-negative and consistent, with a truncation error of the order 2. Moreover, the method is convergent
and the order of convergence is the same as the order of consistency.

Proof. Here we need to prove three properties of the solution, namely non-negativity,
consistency and convergence.

Non-negativity: Note that for any non-negative vector N € R! whose ith component equals to
zero, relations (3.1) and (3.2) give,

BN)>0 and D;(N)=0.

Therefore, 7,-(N)[: E(N) — Di(N)] > 0. This observation is true for any i=1, ..., I. Hence, the non-
negativity of the solution is obtained ([50], Theorem 3.1).
Consistency: The spatial truncation error is given by
dN;(t)
dt
Let us consider B; — B,-(N) first. Recalling relations (2.3) and (3.1), we obtain

oi(t) = Ji(Ni(H) = (B; — Bi(N)) — (D; — Di(N)).

. ! Pt
B;i — Bi(N)=2 Z(l — a)Z)NkJ F(xg — x,x)dx + O(AXB).

k=i Xi-1/2

Using definition (2.6), the term (1 — a)f) is written as

Pk
1 a)b =1 gk xF(xk - X, X) dx . Z;'(:l IX;fl/z (x - xj)F(xk - X, X) dx
—of=1- =

v v '
Z}C:l jxjf] (2 — x)F (o — x, x) dx Z}‘zl fx]fq 122 — X))F(xg — x,x) dx

In the right-hand side of the above relation, we apply quadrature formulae and the property
F(0,x) = F(x, 0) = 0 together with relation (2.2), to obtain

P
<1 — a)i’) J F(xx — x,x)dx = (’)(sz).
Xi-1/2

Furthermore, applying mean value theorem, we can easily obtain

B; — Bi(N) = O(Ax®). (3.5)
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Next we consider D; — f)i(N). Recalling relations (2.4) and (3.2), we obtain
xi

D; —D;N)=(1— wfl)N,-J F(x; — x,x) dx + O(AX).
0

d

In this regard, the term 1 — o] is written as

. pl . p’
! Yic1% 3, Flxi — x,x) dx B Yic1% 3, Flxi — x,x) dx

T—w!=1- =1- pl
Z]l'=1 fx;;l (2% = x))F(x; — x,x) dx

gi xF(x; — x, x) dx

. pi
_ 2 2}21 J‘X;—l/z (x— X]‘)F(xi —x,x)dx

. p’.
Z}:l ij_l 12 (2x — xj)F(x; — x,x) dx

Now, proceeding similar to the previous case, we obtain
Xi
(1 — wf) J F(x; — x,x) dx = O(Ax?),
0

which implies

D; — Di(N) = O(Ax®). (3.6)
Hence, combining the two relations (3.5) and (3.6), we obtain
oi(t) = O(AX®), and hence ||lo(H)] = O(AX?).

Convergence: The above result establishes second-order consistency of the scheme (2.5).
Moreover, proposition 3.1 ensures that (2.5) satisfies Lipschitz condition. Hence, recalling theorem
3.2 from [50], we obtain that the proposed one-dimensional scheme (2.5) is convergent of order 2,
and this order is independent of the meshes. |

Note: The convergence analysis of the two-dimensional scheme (2.12) can also be performed in
a similar approach.

4. Numerical results

In this section, we validate the efficiency of our proposed scheme by considering several test
problems. Since, the proposed scheme involves suitably chosen weight functions, so for future
reference we call it weighted finite volume scheme (WFV scheme). The standard finite volume scheme
proposed by Bourgade & Filbet [26] (BF2008) is considered to compare both the one- and two-
dimensional WFV scheme. However, the two-dimensional formulation of BF2008 model is not
available in the literature. Therefore, the extension of BF2008 for fragmentation events involving
two particle properties is presented in appendix A.

Here, we compute the WFV scheme and BF2008 over different test problems. The assessment of
the WFV scheme is done by observing its efficiency to estimate the zeroth and first moments along
with the particle number density against their exact values. The dimensionless values of all the
concerned quantities have been considered during the computation. In order to make the particle
number density and its moments dimensionless, normalization of those properties is done by
dividing their values obtained at different times by their initial values. In addition, we evaluate
the numerical order of convergence (NOC) for the one-dimensional model. All the computations are
carried up to the end time T'=10 in a standard computer with i3 (2.2 GHz r.p.m.) processor and
3GB RAM. The adaptive time step ODE45 solver in MATLAB is used to solve the discrete system
of equations.
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Figure 1. Exact and numerical values of the particle number density and the normalized moments (test case 1). (a) Number
density and (b) moments.

(a) Examplesin one dimension

Here, we consider three test problems. The exact solutions of the first two test problems are
collected from [23]. The third problem is more complicated and it does not possess exact solution
in closed form. All the problems are considered with mono-dispersed initial data

0, whenO<x<I
x,0)=8(x=)=1{" - !
S 0) =& ) 1, whenx=1L
in order to minimize the accumulated error. Here,  denotes the last grid point. The computational
domain is chosen to be D :=[1077,1].

(i) Test case 1

We consider a problem having size-independent constant fragmentation rate, F(x,y) =1 for all x,
y. For graphical representation, the domain D is divided into 30 non-uniform meshes. The exact
solution of this problem is

n(x, t) = exp(—=1)8(x — I) + [2t + t3(l — x)] exp(—xt) when x <.

Figure 1 represents the comparison of numerical values of different quantities against their exact
values. The number density functions are compared in figure 1a and the first and the zeroth
moments given in figure 1b. From figure 1a, it is observed that both WFV scheme and BF2008
give a good estimation of the number density function, whereas the efficiency of WFV scheme
over BF2008 lies in predicting the zeroth moment with high accuracy and is clearly depicted in
figure 1b. Additionally, the CPU time taken for a complete run over 30 grid points as shown in
figure 1 by WFV scheme is 4 s and that of BF2008 scheme is 13 s, nearly.

In table 1, we compute the the relative error and NOC of the WFV scheme over the uniform
and non-uniform (geometric) meshes. NOC is calculated as follows:

In[E;/E]

NOC= In(2)

4.1)
where [ is the number of pivots and E; = Zle INF" — Nil is the discrete L! error. To maintain a
parity with the graphical results, we start the computation of NOC with 30 initial grid points. The
computation is run for five times and in each run the number of grid points is doubled. Therefore,
in table 1 we get five observations of the relative error and the NOC for the WFV scheme. It is
obtained that the convergence rate of the WFV scheme is approximately 2 over both the meshes.
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Figure 2. Exact and numerical values of the particle number density and the normalized moments (test case 2). (a) Number
density and (b) moments.

Table 1. NOC of the WFV scheme for test case 1.

uniform mesh non-uniform mesh
relative error relative error

However, the calculation of CPU usage time while calculating the NOC is of little interest in the
literature.

(ii) Test case 2

We now consider a size-dependent fragmentation kernel satisfying F(x, y) = x + y for all x, y. Like
before, D is divided into 30 non-uniform meshes. The exact solution of this problem is
n(x, t) = exp(—tx?)[8(x — I) + 26(I — x)] where 6(I — x) := 1, whenx </,

0, whenx>1[.
From figure 2, we see that both the schemes produce good estimation of the number density
and conserve the first moment. However, BF2008 scheme under-predicts the zeroth moment
(figure 2b) which, on the other hand, is well estimated by the WFV scheme. Like before, CPU
times taken by WFV scheme and BF2008 scheme are 6 s and 19 s, respectively to solve the problem
over 30 grid points.

Similar to the test case 1, we compute table 2, and it is observed that the WFV scheme shows a
second-order rate of convergence over both the uniform and geometric meshes.

(iii) Test case 3
Let us consider two problems with the following size-dependent fragmentation kernels:

xy x2y2
(x+y)? (x+y*

Even though the exact solutions are not available, we can calculate the moments exactly.

Fi(x,y)=6

and Fo(x,y)=30
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Figure 3. Exact and numerical values of the normalized moments (test case 3). (a) Kernel ; and (b) kernel F,.

Table 2. NOC of the WFV scheme for test case 2.

uniform mesh non-uniform mesh

relative error relative error

Table 3. NOC of the WFV scheme in test case 3 with kernels £, and F;.

kernel F; kernel F,
uniform mesh non-uniform mesh uniform mesh non-uniform mesh
relative error ~ NOC relative error ~ NOC relative error relative error ~ NOC

Figure 3a,b represents the normalized moments corresponding to the problems with the
kernels, F1(x,y) and Fa(x,y). The CPU time taken by WFV scheme is approximately 5s for both
the problems, whereas CPU time for BF2008 scheme for F is 17s and that of F, is 19s over 30
grid points. Furthermore, the relative error and NOC of the WFV scheme for both the problems
are calculated using the following relation:

In[IN; — Nogll/IINa; — Nag|l]

NOC= In(2) ’

4.2)

where I is the number of grid points, N is the numerical value of the density function [51]
(table 3).
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Figure 4. Exact and numerical values of the normalized moments (test case 4). (a) Kernel £, and (b) Kernel Fy.

(b) Examples in two dimensions

For the two-dimensional problems, we analyse the efficiency of WFV scheme both qualitatively
and quantitatively. The qualitative comparison includes a flat graphical representation of the
zeroth- and first-order moment functions, as followed in the literature by Kumar et al. [47,49].
In flat representation, the moments on each pivot are plotted against the index. To obtain
a systematic plot, the moments are sorted in decreasing order of their exact values. On the
other hand, weighted errors are evaluated to determine the accuracy of the moment functions
quantitatively. A general measure of the weighted error for two-dimensional problems is given
as [47]

M?’;l”(t) - er.,‘}‘m(t)

M?,;?”(t)

i = mtax

(i) Test case 4

Here, we consider two fragmentation kernels given by

2(x1 +x+y1+Y)
1+ +y)

In both the cases, the problems are supported by the mono-dispersed initial data f(x, y,0) = §(x —
Ix)8(y — ly), where I, and I, respectively, correspond to the last pivots along x- and y-directions.
The computational domain considered to be [1072,1] x [10~?,1] and it is divided into 12 x 12
geometric grids. The exact solutions of these problems are not available in the literature. However,
the moment functions can be calculated exactly for these kernels. In figure 4, we plot the zeroth
and the first moments predicted by two-dimensional WFV and BF2008 schemes and compare
them against the exact values. Figure 4a corresponds to the problem with kernel F, and figure 4b
corresponds to Fj. The weighted errors of different moments are given in table 4. Like the one-
dimensional case, we see that WFV scheme produces highly accurate estimation of the zeroth
moment. On the other hand, two-dimensional BF2008 scheme produces a quite under-predicted
estimation of the zeroth moment over coarser grids. As, the sample problems do not have exact
solutions, to evaluate the numerical order of convergence, one needs to use an extended version
of relation (4.2). However, computation of NOC over rectangular meshes is very cumbersome
and involves high CPU usage time. Moreover, the results obtained are similar to those of one-
dimensional cases. Therefore, calculation of NOC for the two-dimensional sample problems is of
little interest.

Fa(x1,y11x,y) := and  Fp(x1,y1lx,y) =

(1 +x)y1 +y)
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Table 4. Maximum error in zeroth- and first-order moments.

kernel K, kernel K,
i BF2008 RS BF2008 WEVS
Moo 0.8437 0.0783 0.3222 6.7955 % 10~
M10+M01 ....................... 00031 ......................... 22982><10—482636><10—5 ....................... 11132><10—5

In order to generate figure 4, the WFV scheme consumed 5s and 6s of CPU time to solve the
problems with kernels K; and K}, respectively. On the other hand, the BF2008 scheme required
29s and 33 s of CPU time for solving the similar set of problems.

5. Conclusion

In this work, we present an efficient finite volume scheme to approximate the fragmentation
equations. The basic idea is to preserve total volume of the particles, and, to estimate total particle
number present in the system with good accuracy. This is done by introducing suitable weight
functions in both the discrete birth and death terms. The development of the one-dimensional
model is completed by studying stability and consistency of the scheme. It is observed that
the one-dimensional scheme is second-order convergent and the rate being independent of the
meshes. Furthermore, we extend the proposed model for solving the problems in two dimensions.
It is observed that the literature has no evidence on multi-dimensional finite volume scheme for
fragmentation problems. So, to validate the efficiency of our proposed two-dimensional model,
we need some reference model in two variables. Therefore, we introduce the two-dimensional
extension of the standard finite volume model proposed by [26]. The efficiency of our proposed
model is validated over several test problems.
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Appendix A. Two-dimensional extension of BF2008 model

To compare the efficiency of two-dimensional WFV scheme, we introduce the two-dimensional
extension of BF2008. For a smooth reading, we first recall one-dimensional BF2008.
Referring to [26], the semi-discrete BF2008 scheme is written as

d(x;N;
(c{t ) _ iv172 — Vie1/2, (AT)

with the initial data

Nf” = ni"Ax,- :J n(x, 0) dx.
A

The function Vi1, denotes the volume-flux at the right boundary of A; and is given by
i I
Vi+1/2 = Z Z ijjrkaAx]',

=1 k=it+1

under the consideration that V1,2 = V41,2 =0. Here, Fj represents the breakage of particles of
volume k into smaller pieces of volumes j and (k — j).
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The continuous two-dimensional volume conservative pure breakage equation is written as

on(x,y,t) _ 0F(x,yt)  9G(xy,t) 92 H(x, y,t)
x+y) ot~ ax ay axdy (A2)
where
X o0 o0
F(x,y,t):= J J J (u+y)F,ylv,wn(u+v,y+w,t)dwdvdu,
0 Jx—uJO
Y (00 OO
g(x,y,t):zj J J (u + x)F(x, u |w, v)n(x +w,u + v, t)dwdvdu,
0 Jy—uJO
X [y (00 00
and H(x,y, t) = J J J J (u+ v)F(u,v|w,z)n(u +w,v + z,t) dzdwdv du.
0J0 Jx—u Jy—v

It is to be noted that relations (2.9) and (A 2) are mathematically equivalent. (Similar calculations
have been performed in [45] for pure aggregation problems.)
Proceeding similarly as done in §2b, we get the following semi-discrete model,

dN;; - - - -
dtlr] (i + ) = [Fiza/2; — Fic1/2j18Y) + [Gijr172 — Gij-1/21A%i
—[Hiv1p2 412 — Hivazj-12 — Hic1a 412 + Hica2j-172), (A3)
along with the initial data
N:'; = L n(x,y,0) dxdy.
if

Derivation of the fluxes F, G and H are obtained as follows.
The conservative truncation of F(x, y, t) is written as

5 x (Ry—u (Ry—w
f(x,y,t):J J J (w+y)F,ylv,wn(u+v,y+w,t)dwdvdu.
0Jx—u JO
Therefore, flux at the cell interface is given by
N Xiy12 Ry Ry
F(Xiy172,Yj,t) = .[0 J J (u+ypFu,yjlv —u,w —yn(,w,t) dwdv du.
Xit172 Y

Applying quadrature formulae, we obtain
i1 ]
Fiv1y2,j(t) = Z Z Z (i, +YpFiy j ko jy Ny jy D%, -
i=1ki=i+1j1=j+1

Similarly, we can write

i I
Gijr1/2(t) ::Z Z Z (i + Y, Fi i, b Nig 1 Ay

and
i I ]

7:‘1'+1/2,j+1/2(t) = Z Z Z Z (xil +yj1)Fi1,j1\k1,llNk1,ll ijl Ax;y.
i]=1j1=1 ky=i+11h =j+1
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Now, substituting the terms F, G and H in the right-hand side of the above semi-discrete
formulation and performing some mathematical computations, the relation (A3) can be
written as

dN;; L
dt] (i +y) = Z Z(xi + Yi)Niy 1, Fi j k1 AXi AYj
kn=i h=j
i
— D Dy +Y)NijFijy1ij A Ay, (A9
=1 j1=1

Thus, relation (A 4) represents the two-dimensional extension of [26] model in a simplified form.
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