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We discuss the formulation of a numerical scheme based on the homotopy
method to solve different aggregation–fragmentation models including the
simultaneous event. Several test cases are considered and analyzed qualitatively
and quantitatively to ascertain the improved accuracy and efficiency of the pro-
posed model over the existing semi-analytical models. The generalized solution
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is also studied.
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1 INTRODUCTION

The interactions among the particles in a dynamical system lead towards the change in their different physical properties
like mass, shape, size, and so on. These phenomena are well-known as particulate events. The application of particulate
events can be found widely, ranging from the natural phenomena to different controlled laboratory/manufacturing units.
For instance, the formation of stars and planets,1,2 merging of rain droplets,3,4 formation of gas bubbles during the erup-
tion of lava/magma,5,6 migrating barchan dunes on Mars and Earth (aeolian geomorphology),7,8 and so on are different
natural particulate events. Whereas different chemical engineering and related colloidal industries like manufacturing of
tablets in pharmaceutical sector,9,10 food processing industries (like whey, powdered milk, coffee, etc.),11–13 in fluidized
bed granulator,14,15 and so on deal with the application of different particulate events. During particulate events, when
two particles join to form a larger cluster, it is called aggregation. On the other hand, the breakage of a particle into smaller
pieces is coined as fragmentation. It is obvious that the particulate events result in the evolution of particle size distri-
bution, as well as their number with respect to time. In this regard, the aggregation results in the decrease of the total
number of particles, and fragmentation leads to the increase of the number. To capture all these phenomena, a mathemat-
ical model called population balance equations (PBEs) is used. In general, PBEs are integro-partial differential equations
supported by some initial data.

1.1 General aggregation–fragmentation (AF) equation
Consider a system undergoing particulate process, and n(t, x) denotes the number density of particles of size x at time t.
Then for x ≥ 0 and 0 ≤ t ≤ T < ∞, the simultaneous AF equation is written as follows16:
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𝜕n(t, x)
𝜕t

= 1
2 ∫

x

0
𝛽(x − 𝜖, 𝜖)n(t, x − 𝜖)n(t, 𝜖)d𝜖 − n(t, x)∫

∞

0
𝛽(x, 𝜖)n(t, 𝜖)d𝜖

+ ∫
∞

x
b(x|𝑦)s(𝑦)n(t, 𝑦)d𝑦 − s(x)n(t, x),

(1.1)

along with the initial condition

n(0, x) ≥ 0, for all x ≥ 0. (1.2)

The left-hand side (lhs) of the initial value problem (1.1) denotes the time evolution of particle number density n(t, x).
The function 𝛽(x, 𝜖) appearing in the first two terms in the right-hand side (rhs) is called the aggregation kernel and
denotes the rate at which particles of size x and size 𝜖 merge to form a larger cluster of size (x + 𝜖). In general, 𝛽(x, 𝜖) is
considered to be symmetric and nonnegative function of x and 𝜖. The last two terms contain the selection function s(𝑦)
which describes the rate at which particles of size 𝑦 are selected to break. The function b(x|𝑦) appearing only in the third
term represents the distribution of daughter particles of size x formed due to the breakage of a larger particle of size 𝑦. In
general, both s and b are nonnegative functions of their arguments.

Additionally, the breakage function b is assumed to satisfy the following properties

b(x|𝑦) = 0 for all x ≥ 𝑦, ∫
𝑦

0
xb(x|𝑦)dx = 𝑦 and ∫

𝑦

0
b(x|𝑦)dx = 𝜈(≥ 2). (1.3)

Here, the first relation is a trivial property. The second relation defines that the sum of the sizes of all the daughter
particles is equal to the size of the mother particle, and the last one defines that 𝜈 number of fragments are produced when
𝑦 undergoes fragmentation. The assumption 𝜈 ≥ 2 defines a multifragmentation model; that is, more than two fragments
are allowed to produce during fragmentation.

To this end, recalling Equation (1.1) each of the first and the third terms is called birth term, because they result towards
the inclusion of particle of size x in the system. Hence, they are associated with a positive sign. On the other hand, the
second and the third terms define the removal of the particle size x from the system and hence called death terms. The
factor 1/2 present in the first term is used to balance the double counting of the particles formed.

For the PBEs, the moment function of the number density n(t, x) is defined as follows:

𝜇i(t) = ∫
∞

0
xin(t, x)dx, for i = 0, 1, 2, … , (1.4)

and they play significant roles to represent various physical entities. For example, the zeroth moment 𝜇0(t) defines the
total number of particles in the system, the first moment 𝜇1(t) represents the total mass of the particulate system, and
so on.

In general, no mass can be created or destroyed; therefore, all phenomena are expected to abide by the mass conservation
laws, which is mathematically expressed as follows:

∫
∞

0
xn(t, x)dx = ∫

∞

0
xn(0, x)dx. (1.5)

1.2 Literature review and motivation
The onset of high-speed computing has facilitate many researchers to work on the solutions of different types of PBEs
as they bear significant responsibilities in different manufacturing units as well as in CFD-simulations.17–23 However,
the complicated nature of the PBE models has rendered the search for exact solutions within a few number of simple
kernels.24–26 Therefore, numerical methods are required to solve the PBEs. In this context, schemes based on sectional
discretizations,27–29 methods of moments,30–32 population dynamics algorithms,33,34 semi-analytical methods,35,36 and so
on are used considerably to solve different problems with empirical kernels. In early 2000, two homotopy-based methods,
namely, the homotopy perturbation method (HPM)37 and the homotopy analysis method (HAM),38 were introduced to
solve different real-life problems. Over the years, these homotopy-based methods have gained popularity due to their
ability to solve different complicated problems. One major advantage of these methods over the conventional numerical
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methods is that they find the solutions in the form of an infinite series. Therefore, knowing a few terms and then passing
the limits to infinity lead us towards the exact solutions of the considered problem. In several occasions, it is observed that
due to the presence of a number of free-to-choose parameters, HAM exhibits better robustness over HPM to predict the
solutions.39 In other words, for same number of terms, the HAM-based series solutions generate highly accurate solutions
as compared with HPM-based series solutions. This has a major advantage to reduce the computational cost considerably.

Several articles on different numerical models to solve PBEs are available in the literature; however, the search for
solutions by semi-analytical methods has not been explored much. In the recent articles,35,36 the authors have applied
Adomian decomposition method (ADM) and HPM, respectively, to obtain solutions for different PBEs and also studied
their convergence. It should be noted that ADM is basically a particular case of HAM for certain choices of the
free-to-choose parameters (details are given in the subsequent discussion). Note that the efficiency of a method for solving
PBEs is defined upon the accuracy to predict the number density function, as well as various significant moment functions.
In this context, an efficient series-based semi-analytical model should be stable enough to produce accurate solutions of
the above properties by considering only a few terms in their series representation.

To this end, this work is the first evidence where HAM is designed to define a recursive scheme for solving PBEs in
different forms, namely, (i) pure fragmentation, (ii) pure aggregation, and (iii) simultaneous AF models. In this work, we
propose to solve the PBEs with HAM and compare the efficiency over HPM by considering several test problems. Note
that pure fragmentation equation is linear in n(t, x), and two test cases with linear and quadratic selection functions are
taken into consideration. For quadratic selection, function particles break at higher rate as compared with the linear one.
Here, we are able to introduce the HAM-based solution in closed form for the first time in literature. The next two prob-
lems are considered for nonlinear aggregation model with sum and product kernels. The total particle mass is conserved
in the system throughout the entire time evolution for sum kernel. However, for product kernel, system starts loosing
the mass after finite time. In other words, a cluster of large size forms and gets eliminated from the system. We there-
fore examined aggregation event with product kernel in order to confirm this intriguing phenomenon. In many real-life
scenarios, fragmentation and aggregation take place simultaneously. Thus, we took into account the simultaneous AF
equation in the last problem. Due to the combination of linear and nonlinear equations, finding the solution becomes
more challenging. For this case, constant aggregation rate and binary breakup with linear selection function is considered.
The solution for this case depends on a parameter, which can determine whether the process will be dominated by aggre-
gation or fragmentation. We have considered both the cases and discussed them in detail. The error analysis is performed
both qualitatively and quantitatively for all the test problems. In this regard, the previous article36 solves some sample
problems on pure fragmentation and pure aggregation using HPM. However, authors have not obtained HPM-based solu-
tion for simultaneous AF equation. Therefore, we have also obtained the HPM-based series solution for the first time to
compare the efficiency of HAM-based series solution.

The article is organized as follows: In the subsequent section, we discuss the preliminary ideas on HAM and also present
the recursive schemes corresponding to different PBEs. In Section 2.3, the convergence analysis of the HAM-based recur-
sive schemes is also proved. Section 3 is devoted on the detailed discussions of several sample problems. Finally, we present
some concluding remarks in Section 4.

2 DISCRETE FORMULATIONS

2.1 Preliminaries
The HAM is basically a recursive scheme for which the initial guess v0 of the solution n(t, x) should be known. In general,
the initial guess of the solution is considered to coincide with the initial data, that is,

v0(t, x) = n(0, x). (2.1)

Further, let q ∈ [0, 1] denote the embedding parameter. The primary idea of the HAM is to construct a continuous
mapping n(t, x) → v(t, x; q) through a homotopy function ℋ , where

ℋ [v(t, x; q); q, ℏ,H] ∶= (1 − q)ℒ [v(t, x; q) − v0(t, x)] − qℏH(t, x)𝒩 [v(t, x; q)] = 0, (2.2)

in such a way that as the embedding parameter q varies from 0 to 1, the homotopy-based solution v(t, x; q) varies from
the initial guess v0 to the exact solution n(t, x). Here in Equation (2.2), ℒ defines a linear operator, 𝒩 is the generalized
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operator (defined according to the problem), ℏ is an auxiliary parameter, and H(t, x) is an auxiliary function. Based upon
our problem, the linear operator is chosen as follows:

ℒ
[
v(t, x; q)

]
=

𝜕v(t, x; q)
𝜕t

such that ℒ [𝑓 (x, 𝑦)] = 0 ⇐⇒ 𝑓 (x, 𝑦) = 0. (2.3)

Let us consider the generalized problem in the following operator form

𝒩 [n(t, x)] = 0. (2.4)

For q = 0, Equation (2.2) along with (2.3) gives

ℒ [v(t, x; 0) − v0(t, x)] = 0 implies v(t, x; 0) = v0(t, x). (2.5)

Again for q = 1, under the consideration that ℏ ≠ 0 and H(t, x) ≠ 0, relation (2.2) becomes

𝒩 [v(t, x; 1)] = 0, (2.6)

which replicates the original problem (2.4), provided

v(t, x; 1) = n(t, x). (2.7)

Hence, according to the construction of Equations (2.5) and (2.7), the homotopy-based solution v(t, x; q) varies from
the initial guess v0(t, x) to the exact solution n(t, x) as the embedding parameter q varies from 0 to 1. In this regard,
Equation (2.2) is called zero-order deformation equation.

The freedom to choose ℒ ,n0(t, x), ℏ,H(t, x) enables us to adjust all the parameters properly such that the solution
of deformation equation exists for q ∈ [0, 1]. Consider that v(t, x; q) is sufficiently smooth with respect to embedding
parameter q, then the mth-order derivative of v(t, x; q) with respect to q is defined as follows:

vm(t, x) ∶=
v[m]

0 (t, x)
m!

= 1
m!

𝜕mv(t, x; q)
𝜕qm

||||q=0
. (2.8)

By Taylor's theorem, v(t, x; q) can be expanded in a power series of q as follows:

v(t, x; q) = v(t, x; 0) +
∞∑

m=1

vm
0 (t, x)

m!
qm = v0(t, x) +

∞∑
m=1

vm(t, x)qm. (2.9)

In general, the above series will converge for q = 1, and hence using relation (2.6) we have

n(t, x) = v0(t, x) +
∞∑

m=1
vm(t, x). (2.10)

We define the vector v⃗m ∶= {v0(t, x), v1(t, x), v2(t, x), … , vm(t, x)}. Differentiating the zero-order deformation
Equation (2.2) m-times with respect to q then dividing it by m! and finally setting q = 0, we get the following mth-order
deformation equation

ℒ
[
vm(t, x) − 𝜒mvm−1(t, x)

]
= ℏH(t, x)m(v⃗m−1, t, x) (2.11)

with initial condition vm(0, x) = 0, where 𝜒m ∶=
{

0, when m ≤ 1,
1, when m > 1,
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and

m(v⃗m−1, t, x) = 1
(m − 1)!

𝜕m−1𝒩 [v(t, x; q)]
𝜕qm−1

|||||q=0
= 1

(m − 1)!
𝜕m−1

𝜕qm−1 𝒩

[ ∞∑
𝑗=0

v𝑗(t, x)q𝑗

]
q=0

. (2.12)

Thus, the solution of Equation (2.11) is given by

vm(t, x) = 𝜒mvm−1(t, x) + ∫
t

0
ℏH(t, s)m

(
v⃗m−1, s, x

)
ds, (2.13)

where m is given by formulation (2.12). In accordance with the solution (2.10), the mth-order approximation of n(t, x)
is given by

n(t, x) ≈
m∑
𝑗=0

vm(t, x) =∶ v̂[m](t, x) (say). (2.14)

In the subsequent discussion, we derive the homotopy-based recursive scheme for the pure fragmentation, pure aggre-
gation, and simultaneous AF problems. The convergence criterion of the new recursive schemes is also studied in due
course.

2.2 Recursive scheme for the AF models
In light of the above discussion, we recall the simultaneous AF Equation (1.1) to define the generalized operator 𝒩 by

𝒩 [n(t, x)] ∶=𝜕n(t, x)
𝜕t

− 1
2 ∫

x

0
𝛽(x − 𝜖, 𝜖)n(t, x − 𝜖)n(t, 𝜖)d𝜖 + n(t, x)∫

∞

0
𝛽(x, 𝜖)n(t, 𝜖)d𝜖

− ∫
∞

x
b(x|𝑦)s(𝑦)n(t, 𝑦)d𝑦 + s(x)n(t, x) = 0.

The HAM-based recursive solution vm(t, x) is obtained from Equation (2.13), where m is given by

m
(

v⃗m−1, t, x
)
=𝜕vm−1(t, x)

𝜕t
− 1

2 ∫
x

0
𝛽(x − 𝜖, 𝜖)

m−1∑
i=0

vi(t, x − 𝜖)vm−1−i(t, 𝜖)d𝜖

+
m−1∑
i=0

vi(t, x)∫
∞

0
𝛽(x, 𝜖)vm−1−i(t, 𝜖)d𝜖

− ∫
∞

x
b(x|𝑦)s(𝑦)vm−1(t, x)d𝑦 + s(x)vm−1(t, x).

(2.15)

Further simplification of m is obtained in Section 3, under the different choices of the kernels 𝛽(x, 𝜖), s(x), and b(x|𝑦).
Note that the pure fragmentation and pure aggregation models are obtained by setting 𝛽 = 0 and s = 0, respectively, in
Equation (1.1).

To this end, the HAM-based recursive solution (2.13) for the pure fragmentation is obtained by setting 𝛽 = 0 in the
definition of m (2.15) which reads as

m
(

v⃗m−1, t, x
)
= 𝜕vm−1(t, x)

𝜕t
− ∫

∞

x
b(x|𝑦)s(𝑦)vm−1(t, x)d𝑦 + s(x)vm−1(t, x). (2.16)

Similarly, setting s = 0 in relation (2.15) defines the m corresponding to the pure aggregation equation as

m
(

v⃗m−1, t, x
)
= 𝜕vm−1(t, x)

𝜕t
− 1

2 ∫
x

0
𝛽(x − 𝜖, 𝜖)

m−1∑
i=0

vi(t, x − 𝜖)vm−1−i(t, 𝜖)d𝜖

+
m−1∑
i=0

vi(t, x)∫
∞

0
𝛽(x, 𝜖)vm−1−i(t, 𝜖)d𝜖.

(2.17)
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Remark 2.1. One can generate the ADM-based recursive scheme by setting H(t, x) = 1 and ℏ = −1 in the
Equation (2.13). The design of HAM suggests that ℏ plays a pivotal role to improve the efficiency of the method. The
subsequent section validates that a good choice ofℏ, instead of a fixed value, improves the efficiency of the HAM-based
solutions.

2.3 Convergence theorem
In this part, we state and prove the convergence criterion of the recursive solutions vm(t, x) generated with the help of
the formulation (2.13). Since model (2.13) along with the m (2.15) represents the generalized AF model, therefore, we
analyze the convergence of the solution with m given by (2.15). Other two models of pure fragmentation and pure
aggregation with m's given by (2.16) and (2.17), respectively, being the particular cases of the above considered problem.

Theorem 2.1. If the recursive solution vm(t, x) is governed by the higher-order deformation Equation (2.11) with m

given by (2.15) and under the initial condition (2.1), then as long as the series (2.9) converges, it must be the exact solution
of problem (2.4).

Proof. Consider that the series
∞∑

m=0
vm(t, x) converges. Then we can write

n(t, x) =
∞∑

m=0
vm(t, x), which implies lim

m→∞
vm(t, x) = 0. (2.18)

In this context,

𝑗∑
m=0

[
vm(t, x) − 𝜒mvm−1(t, x)

]
= v1 + (v2 − v1) + … +

(
v𝑗 − v𝑗−1

)
= v𝑗(t, x),

and hence, in accordance with relation (2.18), we get

∞∑
m=0

[
vm(t, x) − 𝜒mvm−1(t, x)

]
= lim

𝑗→∞
v𝑗(t, x) = 0.

Due to the linearity property of ℒ , we have

∞∑
m=0

ℒ
[
vm(t, x) − 𝜒mvm−1(t, x)

]
= ℒ

∞∑
m=0

[
vm(t, x) − 𝜒mvm−1(t, x)

]
= 0.

Thus, recalling mth-order deformation equation, we obtain

∞∑
m=0

ℒ
[
vm(t, x) − 𝜒mvm−1(t, x)

]
= ℏH(t, x)

∞∑
m=1

m
[
v⃗m−1

]
= 0.

Since ℏ ≠ 0 and H(t, x) ≠ 0, therefore,

∞∑
m=1

m
[
v⃗m−1

]
= 0. (2.19)
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Recalling (2.15), we get

∞∑
m=1

m
[
v⃗m−1

]
=

∞∑
m=1

[
𝜕vm−1(t, x)

𝜕t
− 1

2 ∫
x

0
𝛽(x − 𝜖, 𝜖)

m−1∑
i=0

vi(t, x − 𝜖)vm−1−i(t, 𝜖)d𝜖

+
m−1∑
i=0

vi(t, x)∫
∞

0
𝛽(x, 𝜖)vm−1−i(t, 𝜖)d𝜖

− ∫
∞

x
b(x|𝑦)s(𝑦)vm−1(t, x)d𝑦 + s(x)vm−1(t, x)

]

=
∞∑

m=1

𝜕vm−1(t, x)
𝜕t

− 1
2 ∫

x

0
𝛽(x − 𝜖, 𝜖)

∞∑
m=1

m−1∑
i=0

vi(t, x − 𝜖)vm−1−i(t, 𝜖)d𝜖

+
∞∑

m=1

m−1∑
i=0

vi(t, x)∫
∞

0
𝛽(x, 𝜖)vm−1−i(t, 𝜖)d𝜖

− ∫
∞

x
b(x|𝑦)s(𝑦) ∞∑

m=1
vm−1(t, x)d𝑦 + s(x)

∞∑
m=1

vm−1(t, x).

Changing the order of the sums and the substituting 𝑗 = m − 1 − i, we get

∞∑
m=1

m
[
v⃗m−1

]
=

∞∑
m=1

𝜕vm−1(t, x)
𝜕t

− 1
2 ∫

x

0
𝛽(x − 𝜖, 𝜖)

∞∑
i=0

∞∑
m=i+1

ni(t, x − 𝜖)vm−1−i(t, 𝜖)d𝜖

+
∞∑

i=0

∞∑
m=i+1

vi(t, x)∫
∞

0
𝛽(x, 𝜖)vm−1−i(t, 𝜖)d𝜖

− ∫
∞

x
b(x|𝑦)s(𝑦) ∞∑

m=0
vm(t, x)d𝑦 + s(x)

∞∑
m=0

vm(t, x)

=
∞∑

m=1

𝜕vm−1(t, x)
𝜕t

− 1
2 ∫

x

0
𝛽(x − 𝜖, 𝜖)

∞∑
i=0

vi(t, x − 𝜖)
∞∑
𝑗=0

v𝑗(t, 𝜖)d𝜖

+
∞∑

i=0
vi(t, x)∫

∞

0
𝛽(x, 𝜖)

∞∑
𝑗=0

v𝑗(t, 𝜖)d𝜖

− ∫
∞

x
b(x|𝑦)s(𝑦) ∞∑

m=0
vm(t, x)d𝑦 + s(x)

∞∑
m=0

vm(t, x).

Combining (2.18) and (2.19), we have

𝜕n(t, x)
𝜕t

=1
2 ∫

x

0
𝛽(x − 𝜖, 𝜖)n(t, x − 𝜖)n(t, 𝜖)d𝜖 − n(t, x)∫

∞

0
𝛽(x, 𝜖)n(t, 𝜖)d𝜖

+ ∫
∞

x
b(x|𝑦)s(𝑦)n(t, 𝑦)d𝑦 − s(x)n(t, x).

(2.20)

Now, from the initial conditions of vm(t, x), it holds that

n(0, x) =
∞∑

m=0
vm(0, x) = v0(0, x) +

∞∑
m=1

vm(0, x) = v0(0, x) = v(0, x).

Hence, from the last two expressions, one can observe that v(t, x) must be the exact solution of (1.1). □
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3 NUMERICAL EXAMPLES: RESULTS AND DISCUSSIONS

In this section, we solve five different PBE models with different empirical kernels using homotopy analysis and HPMs.
Two problems on pure fragmentation, two problems on pure aggregation, and one problem on simultaneous AF equation
are discussed with increasing difficulty level. For choosing these problems, the physical motivation has been discussed
in Section 1.2 in detail. Pure fragmentation is linear in nature, whereas aggregation is nonlinear. Note that we are able to
present the nth-order general term in the HAM-based series solution of the fragmentation problems for the first time in
the literature. This helps to represent the solution in closed form. Thus, suitable choices of the free-to-choose parameters
ℏ, H(x), v0(t, x) and then passing the limit, we can generate the exact solution of the corresponding problems. However,
due to highly nonlinear nature of the aggregation equations, we are unable to write the series solution in closed form. To
overcome this difficulty, we find the first few terms of the series solution and thus generate the semi-analytical solutions
for the aggregation models. The HAM-based recursive solution is recalled from Section 2, and the HPM-based recursive
solution is recalled from the article.36 For convenience, we denote the mth-order HPM-based solution as ĉ[m]. In this
context, the HPM-based solution for the simultaneous AF model is not available in the literature. Therefore, we briefly
present the recursive scheme and the corresponding HPM-based solution for a smooth study of the readers.

The accuracy of the methods is analyzed over their ability to predict the exact solutions as well as significant moments
of different orders. Both qualitative and quantitative analyses of different quantities are presented for all the problems. In
order to calculate the error, for a fixed t, we consider the computational domain Λ ∶= [0, 100] is divided into I number
of subintervals Λi. Let xi and Δxi denote the midpoint and the length of each subinterval Λi. Under these considerations,
the error is calculated as follows:35

Error ∶=
I∑

i=1

||n(t, xi) − v̂[m](t, xi)||Δxi. (3.1)

Here, n (t, xi) and v̂[m] (t, xi) are the exact solution and mth-order recursive scheme-based solution evaluated at (t, xi),
respectively.

The error for the moments is calculated by using the formula

Moment Error ∶= ||𝜇exact
i − 𝜇num

i
|| . (3.2)

Here, 𝜇exact
i and 𝜇num

i are the exact and recursive scheme-based moments of ith order.
Throughout the computation, we consider H(t, s) = 1 in Equation (2.13), and all the required quantities are made

dimensionless by scaling them with their initial values. All the computations are executed in a HP Z6 G4 workstation
using Mathematica 12.3 software.

3.1 Pure fragmentation
We consider the pure fragmentation problem with two different selection rates. Table 1 represents the choices of kernels,
initial data along with their exact solutions. The exact solutions of the problems are collected from Ziff and McGrady.25

Example 3.1. We choose the kernels b(x|𝑦) = 2∕𝑦, s(x) = x and initial condition n(0, x) = exp(−x). The exact solution
for this problem is given in Table 1.

Putting the values of b(x|𝑦), s(x), and initial condition, the reduced m (2.16) is given by

m
(

v⃗m−1, t, x
)
= 𝜕vm−1(t, x)

𝜕t
− 2∫

∞

x
vm−1(t, x)d𝑦 + xvm−1(t, x). (3.3)

TABLE 1 Exact solutions for pure fragmentation problems. S. no. b(x|𝒚) s(x) n(0, x) Exact solution
1 2∕𝑦 x exp(−x) (1 + t)2 exp [−(1 + t)x]
2 2∕𝑦 x2 exp(−x) [1 + 2t(1 + x)]2 exp

[
−tx2 − x

]
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Using the recursive scheme (3.3) along with

vm(t, x) = 𝜒mvm−1(t, x) + ∫
t

0
ℏH(t, s)m

(
v⃗m−1, s, x

)
ds,

we obtain
v0(t, x) = exp(−x),

v1(t, x) = exp(−x)ℏt (−2 + x) ,

v2(t, x) = 1
2!

exp(−x)ℏt
[
2(1 + ℏ)(−2 + x) + ℏt

(
2 − 4x + x2)] .

Following the above pattern, the generalized mth term vm(t, x) for m ≥ 1 is written as follows:

vm(t, x) = 1
m!

exp(−x)ℏt
m∑

i=1
L(m, i)ℏi−1(1 + ℏ)m−i [i(i − 1) − 2ix + x2] ti−1xi−2, (3.4)

where L(m, i) is the well-known Lah number and is defined by L(m, i) ∶=
(

m−1
i−1

)
m!
i!

.
The freedom to choose ℏ motivates us to search for a set of values of ℏ for which the HAM-based solution converges

rapidly to the exact solution. In this regard, the fifth-order approximation v̂[5] at t = 1 and x = 0.5 is plotted against
ℏ in Figure 1A. It is observed that the graph is flat near −1.75 and in between [−1,−0.5]. Thus, method is expected to

FIGURE 1 (A, B) ℏ against v̂[5] for t = 1 and x = 0.5 for Example 3.1 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 (A) Number density and (B) error curves for Example 3.1 [Colour figure can be viewed at wileyonlinelibrary.com]
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converge rapidly when ℏ lies in the above intervals. We next analyze the HAM-based solution v̂[5] for different values of ℏ
in [−2,−0.2]. Computing several graphs in Figure 1B, it is observed that v̂[5] is in good agrement with the exact solution
for ℏ = −0.75.

We now plot v̂[5] and ĉ[5] against their exact values in Figure 2A. On the other hand, Figure 2B represents the error graph
while plotting the solution. The quantitative error analysis of the solution for the two methods is presented in Table 2.

The above data show that the HAM produces accurate solutions as compared with HPM over coarser grids. As expected
due to linear selection rate, the accuracy for both the methods becomes comparable when the number of grid points
increases. In the following part, we analyze the methods to predict different significant moment functions. The qualitative
comparison is presented in Figure 3, and the quantitative error analysis is presented in Table 3. From Figure 3A and
Table 3, we can observe that the zeroth and the first moment are in excellent agreement with exact solution and has
minimal error. Figure 3B shows that HAM predicts second-order moment more precisely than HPM method over the
considered time duration. The same can be observed from the error in Table 3 as well.

From the above illustrations, it is observed that considering only a five-term solution, HAM exhibits highly accurate
results over HPM to predict different quantities.

Example 3.2. Consider the kernels b(x|𝑦) = 2∕𝑦, s(x) = x2 and initial condition is n(0, x) = exp(−x).

Setting the above kernels, the recursive scheme (2.16) is written as

m
(

v⃗m−1, t, x
)
= 𝜕vm−1(t, x)

𝜕t
− 2∫

∞

x
xvm−1(t, x)d𝑦 + x2vm−1(t, x), (3.5)

TABLE 2 Error table for Example 3.1 I 10 20 30 40
Error (HPM) 1.171 × 10−3 1.414 × 10−6 4.188 × 10−10 6.783 × 10−14

Error (HAM) 5.505 × 10−4 2.988 × 10−7 1.025 × 10−10 1.783 × 10−14

Abbreviations: HAM, homotopy analysis method; HPM, homotopy perturbation method.

FIGURE 3 (A, B) Comparison of different moments for Example 3.1 [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Error analysis of the moments at
different times for the Example 3.1

HAM HPM
t 𝝁0(t) 𝝁1(t) 𝝁2(t) 𝝁0(t) 𝝁1(t) 𝝁2(t)
0.2 7.813E-16 0 3.333E-5 0 0 5.333E-4
0.4 1.563E-16 2.220E-16 3.571E-6 6.661E-16 0 0.015
0.6 2.344E-16 0 0.001 3.331E-16 6.661E-16 0.097
0.8 3.125E-16 2.220E-16 0.013 1.776E-16 8.882E-15 0.364
1.0 3.906E-16 0 0.063 8.882E-16 0 1

Abbreviations: HAM, homotopy analysis method; HPM, homotopy perturbation method.
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and recalling Equation (2.13)

vm(t, x) = 𝜒mvm−1(t, x) + ∫
t

0
ℏH(t, s)m

(
v⃗m−1, s, x

)
ds,

few initial terms of the HAM-based series solution are calculated as

v0(t, x) = exp(−x),

v1(t, x) = exp(−x)ℏt
(
−2 − 2x + x2) ,

v2(t, x) = 1
2!

exp(−x)ℏt
[
2(1 + ℏ)

(
−2 − 2x + x2) + ℏtx2 (−4 − 4x + x2)] .

Following the above pattern, we write the generalized vm(t, x) for m ≥ 1 as

vm(t, x) = 1
m!

exp(−x)ℏt
m∑

i=1
L(m, i)ℏi−1(1 + ℏ)m−i [−2i − 2ix + x2] ti−1x2(i−2), (3.6)

where L(m, i) ∶=
(

m−1
i−1

)
m!
i!

.
Like the previous example, ℏ is plotted against v̂[5] at t = 1 and x = 0.5 in Figure 4 to search the suitable range of

ℏ for which the HAM-based solution converges rapidly to the exact solution. It is observed that the graph is flat when
ℏ ∈ [−1.5,−0.25].

FIGURE 4 ℏ against v̂[5] for t = 1 and x = 0.5 for Example 3.2
[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 (A) Number density and (B) error curves for Example 3.2 [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 4 Error table for Example 3.2. I 10 20 30 40
Error (HPM) 4.144 0.264 3.872 × 10−4 1.932 × 10−7

Error (HAM) 1.679 × 10−3 9.347 × 10−5 1.703 × 10−7 9.067 × 10−11

Abbreviations: HAM, homotopy analysis method; HPM, homotopy perturbation method.

FIGURE 6 (A, B) Comparison of different moments for Example 3.2 [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 5 Error analysis of moments at different times
for the Example 3.2

HAM HPM
t 𝝁0(t) 𝝁1(t) 𝝁2(t) 𝝁0(t) 𝝁1(t) 𝝁2(t)
0.2 0.139 2.220E-16 0.153 0.267 1.221E-15 21.161
0.4 0.224 2.220E-16 0.136 4.990 1.310E-14 377.82
0.6 0.290 4.441E-16 0.224 26.912 0 1992.1
0.8 0.348 1.332E-15 0.739 87.906 3.064E-14 6430.6
1.0 0.407 5.551E-16 2.291 219.091 0 15905.2

Abbreviations: HAM, homotopy analysis method; HPM, homotopy perturbation
method.

In this regard, computing v̂[5] for different values of ℏ, it is observed that for ℏ = −0.65, the solution v̂[5] shows very good
agreement with the exact solution. The qualitative and quantitative analyses of the two methods to predict the solution are
studied through Figure 5 and Table 4, respectively. It is evident from Table 4 that even when there are 10 grid points, HAM
gives highly precise prediction, whereas HPM has accumulates error heavily. As we increase the number of grids, the
error for HAM decreases more rapidly than HPM method. The following results support that HAM predicts the solution
with high accuracy even for a small number of approximate terms.

Furthermore, significant moment functions of different orders are plotted in Figure 6, and their error analysis is calcu-
lated in Table 5. From Figure 6A, we can observe that the zeroth predicted by HPM is not as accurate as HAM, whereas
both methods conserve mass. Figure 6B shows that HPM gives very poor results for second moment as compared with
HAM. The error analysis of moments presented in Table 5 supports the above-stated observations from the figures.

The five-term HAM- and HPM-based solutions are compared with respect to the exact values. The HAM-based solutions
give more accurate results as compared with the HPM-based solutions.

3.2 Pure aggregation
We consider the pure aggregation equation with two different sets of kernels. The analytical solutions for the considered
problems are collected from Hulburt and Katz24 and are given in Table 6 below:
where T(t) = 1 − exp(−t) and I1(·) is the Bessel function of first kind.
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Example 3.3. Consider the kernel 𝛽(x, 𝜖) = x + 𝜖 and initial condition n(0, x) = exp(−x).

The HAM-based recursive scheme (2.17) is written as

m
(

v⃗m−1, t, x
)
=𝜕vm−1(t, x)

𝜕t
− 1

2 ∫
x

0
x

m−1∑
i=0

vi(t, x − 𝜖)vm−1−i(t, 𝜖)d𝜖

+
m−1∑
i=0

vi(t, x)∫
∞

0
(x + 𝜖)vm−1−i(t, 𝜖)d𝜖,

(3.7)

and the HAM-based solution is obtained by using the recursive scheme (3.7) along with

vm(t, x) = 𝜒mvm−1(t, x) + ∫
t

0
ℏH(t, s)m

(
v⃗m−1, s, x

)
ds.

The first few terms of the series are calculated as follows:

v0(t, x) = exp(−x),

v1(t, x) = − 1
2!

exp(−x)ℏt
(
−2 − 2x + x2) ,

v2(t, x) = 1
2(3!)

exp(−x)ℏt
[
−6(1 + ℏ)

(
−2 − 2x + x2) + ℏt

(
6 + 18x − 3x2 − 6x3 + x4)] .

Like before, v̂[5] is plotted against ℏ in Figure 7 at t = 1 and x = 0.5. It is observed that the ℏ− curve is flat in [−0.7,−0.6].
Therefore, the method is expected to converge rapidly for a value near these points.

Computing number density graphs for different values of ℏ, it is observed from Figure 8A that the solution obtained
for h = −0.65 predicts the number density with high accuracy. Moreover, the error analysis presented in Figure 8B and
Table 7 confirms that five-term HAM produces more accurate results than HPM.

Now different moment functions are plotted against their exact values in Figure 9. The error analysis corresponding
to different moment functions is given in Table 8. Like before, the HAM-based solution predicts the moments with high
accuracy.

Example 3.4. Consider the kernel 𝛽(x, 𝜖) = x𝜖 and initial condition n(0, x) = exp(−x).

S. no. 𝜷(x, 𝝐) n(0, x) Exact solution

1 x + 𝜖 exp(−x)
[1−T(t)] exp[−x(T(t)+1)]I1

(
2x
√

T(t)
)

x
√

T(t)

2 x𝜖 exp(−x) exp [−(t + 1)x]
∞∑

k=0

tkx3k

(k+1)!Γ(2k+2)

TABLE 6 Exact solutions for pure aggregation problems.

FIGURE 7 ℏ against v̂[5] for t = 1 and x = 0.5 for Example 3.3
[Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 8 (A) Number density and (B) error curves for Example 3.3 [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 7 Error table for Example 3.3. I 10 20 40 80
Error (HPM) 0.233 0.0282 2.504 × 10−3 9.193 × 10−5

Error (HAM) 0.215 0.0279 2.504 × 10−3 9.192 × 10−5

Abbreviations: HAM, homotopy analysis method; HPM, homotopy
perturbation method.

FIGURE 9 (A, B) Comparison of different moments for Example 3.3 [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 8 Error for the moments at different times
for the Example 3.3.

HAM HPM
t 𝝁0(t) 𝝁1(t) 𝝁2(t) 𝝁0(t) 𝝁1(t) 𝝁2(t)
0.2 2.138E-6 2.220E-16 0.0435 2.580E-6 2.220E-16 1.827E-4
0.4 2.508E-5 0 0.2138 7.995E-5 3.331E-16 0.006
0.6 1.878E-4 8.882E-16 0.6632 5.884E-4 2.220E-16 0.051
0.8 2.793E-3 1.776E-15 1.6517 2.404E-3 4.663E-16 0.235
1.0 2.506E-3 5.773E-15 3.6047 7.121E-3 0 0.778

Abbreviations: HAM, homotopy analysis method; HPM, homotopy perturbation method.

The HAM-based recursive scheme (2.17) reads as

m
(

v⃗m−1, t, x
)
=𝜕vm−1(t, x)

𝜕t
− 1

2 ∫
x

0
(x − 𝜖)𝜖

m−1∑
i=0

vi(t, x − 𝜖)vm−1−i(t, 𝜖)d𝜖

+
m−1∑
i=0

vi(t, x)∫
∞

0
x𝜖vm−1−i(t, 𝜖)d𝜖,

(3.8)
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with

vm(t, x) = 𝜒mvm−1(t, x) + ∫
t

0
ℏH(t, s)m

(
v⃗m−1, s, x

)
ds,

and the first few terms of the HAM-based solution is written as

v0(t, x) = exp(−x),

v1(t, x) = − 1
12

exp(−x)ℏtx
[
−12 + x2] ,

v2(t, x) = 1
720

exp(−x)ℏtx
[
−60(1 + ℏ)(−12 + x2) + ℏtx(360 − 60x2 + x4)

]
.

The following Figure 10 shows that ℏ− curve is parallel to horizontal axis for ℏ ∈ [−1,−0.8]. So, HAM-based solution will
converge for some point near these values.

Following the previous methodology, we obtain that HAM-based solutions converge rapidly for ℏ = −0.775. Note that
𝛽(x, 𝜖) = x𝜖 exhibits gelling behavior; that is, infinite size clusters are formed in a finite time-span.40 Thus, the index
(degree) of aggregation is defined as Iagg = 1 − 𝜇0(t)

𝜇00
, which is a dimensionless form of the zeroth moment and defines

the time at which gelation onsets. As mentioned in Kumar et al,40 we consider Igel
agg = 0.20 and thus obtain that mass loss

occurs at t = 0.4. Therefore, the final computation time for this case is taken until t = 0.4. Pictorial representation of the
number density and the error graph is given in Figure 11, and the corresponding error analysis is presented in Table 9.
The figure and table together validate the accuracy of the method.

The moment functions are plotted in Figure 12, and their error analysis is given in Table 10. Both the methods conserve
mass until the onset of gelation. HPM produces a poor prediction of the zeroth and second moment. On the other hand,
zeroth moment predicted by HAM is in good agrement with exact value, whereas the prediction of second moment is

FIGURE 10 ℏ against v̂[5] for t = 1 and x = 0.5 for Example 3.4
[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 11 (A) Number density and (B) error curves for Example 3.4 [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 9 Error table for Example 3.4 I 10 20 40 80
Error (HPM) 0.137 0.017 1.561 × 10−3 1.953 × 10−4

Error (HAM) 0.102 0.012 1.561 × 10−3 1.952 × 10−4

Abbreviations: HAM, homotopy analysis method; HPM, homotopy per-
turbation method.

FIGURE 12 (A, B) Comparison of different moments for Example 3.4 [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 10 Error analysis of the moments at different
times for the Example 3.4

HAM HPM
t 𝝁0(t) 𝝁1(t) 𝝁2(t) 𝝁0(t) 𝝁1(t) 𝝁2(t)
0.1 1.281E-4 7.772E-16 0.010 0.05 8.882E-16 0.399
0.2 2.563E-4 0 0.109 0.10 3.331E-16 0.766
0.3 3.844E-4 2.109E-15 0.680 0.15 1.887E-15 0.811
0.4 5.126E-4 8.882E-16 4.079 0.20 1.665E-15 1.677

Abbreviations: HAM, homotopy analysis method; HPM, homotopy perturbation
method.

highly accurate until t = 0.2, and it improves with the inclusion of more number of terms in the series solution. The error
Table 10 shows that the presented HAM method predicts all three chosen moments precisely as compared with HPM
method.

3.3 Simultaneous AF equation
Example 3.5. We consider the simultaneous AF Equation (1.1) in LPA form as given in McCoy and Madras.41 The
analytical solution is proposed by earlier studies31,32 for the following set of kernels:

𝛽(x, 𝜖) = 1, S(x) = S0x, and b(x|𝑦) = 1∕𝑦, (3.9)

with initial condition n(0, x) = exp(−x) written as

n(t, x) = [Φ(t)]2 exp [−xΦ(t)] , (3.10)

where

Φ(t) ∶= 𝜙 (∞)
1 + 𝜙 (∞) tanh

[
𝜙(∞) t

2

]
𝜙 (∞) + tanh

[
𝜙(∞) t

2

] , with 𝜙 (∞) =
√

2S0. (3.11)
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The HPM-based recursive scheme is not available in the literature for this model. Thus, for the convenience of reading,
we present the HPM-based recursive scheme for k ≥ 1 as

𝜕ck(t, x)
𝜕t

=1
2 ∫

x

0
𝛽(x − 𝜖, 𝜖)

k−1∑
i=0

ci(t, x − 𝜖)ck−i−1(t, 𝜖)d𝜖 −
k−1∑
i=0

ci(t, x)∫
∞

0
𝛽(x, 𝜖)ck−i−1(t, 𝜖)d𝜖

+ ∫
∞

x
b(x|𝑦)ck−1(t, 𝑦)s(𝑦)d𝑦 − s(x)ck−1(t, x).

(3.12)

Therefore, the HPM-based solution ck(t, x) is obtained as

c0(t, x) = exp (−x) ,

c1(t, x) = t
[
2S0 − S0x − 1 + x

2

]
exp (−x) ,

c2(t, x) = 1
2

t2
[
−2S0 − (2S0 − 1) S0(x − 1) + S0x − S0x

(
2S0 − S0x − 1 + x

2

)
−
(

S0 −
1
2

)
− 1

4
(2S0 − 1)(x − 4)x + 1 − x

2

]
exp (−x) .

We now write the HAM-based recursive scheme (2.15) with kernels (3.9) as

m
(

v⃗m−1, t, x
)
=𝜕vm−1(t, x)

𝜕t
− 1

2 ∫
x

0

m−1∑
i=0

vi(t, x − 𝜖)nm−1−i(t, 𝜖)d𝜖

+
m−1∑
i=0

vi(t, x)∫
∞

0
vm−1−i(t, 𝜖)d𝜖 − 2∫

∞

x
S0vm−1(t, x)d𝑦

+ S0xvm−1(t, x),

(3.13)

and

vm(t, x) = 𝜒mvm−1(t, x) + ∫
t

0
ℏH(t, s)m

(
v⃗m−1, s, x

)
ds. (3.14)

Using the recursive scheme (3.13) along with (3.14), we obtain vm(t, x) for m ≥ 1 as

v0(t, x) = exp(−x),

v1(t, x) = 1
2

exp(−x)ℏt (−1 + 2S0) (−2 + x),

v2(t, x) = 1
8

exp(−x)ℏt (−1 + 2S0)
[
4(1 + ℏ)(−2 + x) + ℏt

(
−6 − 6x − x2 + 2S0(2 − 5x + x2)

)]
.

FIGURE 13 ℏ against v̂[5] for t = 1 and x = 0.5 for Example 3.5
[Colour figure can be viewed at wileyonlinelibrary.com]
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Behavior of the solution depends on the value of S0, that is, on 𝜙 (∞) = 𝜇0(t)
𝜇0(0)

=
√

2S0, which is the ratio of the particle
number density at the steady-state condition to its value at the initial condition.31 Depending upon the value of 𝜙 (∞),
three cases arise: (i) aggregation dominates when 𝜙 (∞) < 1, (ii) fragmentation dominates for 𝜙 (∞) > 1, and (iii) when
Φ(t) = 𝜙 (∞) = 1, the steady-state solution n(t, x) = exp(−x) = n(0, x) is obtained. In the subsequent discussion, we
consider 𝜙 (∞) < 1 by setting S0 = 0.1 which gives 𝜙 (∞) = 0.447.

From Figure 13, we can observe that the ℏ− curve shows flatness in between [−0.85,−0.45].
Computing the graphs for several values of ℏ, the best agrement with the exact solution is obtained for ℏ = −0.725. We

next compute the numerical number density with the particle size distribution and error for both methods. The following
results in Figure 14B and Table 11 support that HAM predicts the solution with high accuracy even for a small number
of approximate terms.

Figure 15 represents the plots of zeroth-, first-, and second-order moments obtained using HAM and HPM against their
exact values.

FIGURE 14 (A) Number density and (B) error curves for Example 3.5 [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 11 Error table for Example 3.5 I 10 15 20 25
Error (HPM) 0.0172 3.139 × 10−4 6.154 × 10−6 1.276 × 10−7

Error (HAM) 0.0171 3.133 × 10−4 6.151 × 10−6 1.270 × 10−7

FIGURE 15 (A, B) Comparison of different moments for Example 3.5 [Colour figure can be viewed at wileyonlinelibrary.com]
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Moments obtained from HAM are in good agreement with their exact values. For HPM method, only first- and
second-order moments agree with exact solution, and the zeroth moment exhibits overprediction. Error analysis of the
moment functions is given in the following table. The data in the Table 12 validate the observations made from the graphs
that all the moments are predicted with high accuracy.

Remark 3.1. It can be observed that the graphs of number density and the moments in Examples 3.3 and 3.5 behave
in a similar manner. This validates the fact that aggregation dominates whenever 𝜙 (∞) < 1.

Remark 3.2. Setting S0 = 2 implies 𝜙 (∞) = 2(> 1); that is, when fragmentation dominates, we obtain the following
graphs (see Figure 16);

Note that Figures 5 and 6 in Example 3.2 show similar behavior as the above graphs, which validates the fact of
fragmentation being dominant for 𝜙 (∞) > 1.

HAM HPM
t 𝝁0(t) 𝝁1(t) 𝝁2(t) 𝝁0(t) 𝝁1(t) 𝝁2(t)
0.2 1.124E-4 0 1.896E-8 5.895E-6 0 6.929E-4
0.4 7.822E-6 2.220E-16 6.642E-7 1.739E-4 3.331E-16 9.149E-4
0.6 8.236E-5 0 5.458E-6 1.224E-3 1.110E-16 6.623E-4
0.8 1.052E-4 7.772E-16 2.465E-5 0.005 2.220E-16 2.337E-5
1.0 1.106E-4 8.882E-16 7.995E-5 0.014 2.220E-16 1.060E-3

TABLE 12 Error analysis of the moments at
different times for the Example 3.5

FIGURE 16 (A–D) Comparison of number density and different moments when S0 = 2 in Example 3.5 [Colour figure can be viewed at
wileyonlinelibrary.com]
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4 CONCLUSION

In this paper, the HAM is used to define numerical schemes for solving different kind of PBEs. The method generates
series solutions, and the corresponding recursive scheme for the same is obtained. The series solution in closed form
is written for fragmentation models. Detailed convergence analysis is also performed for the newly defined recursive
scheme. Evaluation of number density along with its different moments is studied, and a detailed error analysis is also
carried out and compared with the existing HPM-based solutions. It is observed that the overall agreement of the results by
the HAM-based solutions with the analytical solution is better than the HPM-based solutions. Moreover, HPM produces
very poor prediction as the size dependency of the model increases.
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