
Kinetic and Related Models doi:10.3934/krm.2019004
c©American Institute of Mathematical Sciences
Volume 12, Number 1, February 2019 pp. 79–103

NUMERICAL SOLUTIONS FOR MULTIDIMENSIONAL

FRAGMENTATION PROBLEMS USING FINITE

VOLUME METHODS

Jitraj Saha∗

Department of Mathematics

National Institute of Technology Tiruchirappalli
Tiruchirappalli-620 015, Tamil Nadu, India

Nilima Das and Jitendra Kumar

Department of Mathematics
Indian Institute of Technology Kharagpur

Kharagpur-721 302, West Bengal, India

Andreas Bück

Institute of Particle Technology (LFG)

Friedrich-Alexander University Erlangen-Nürnberg

D-91058 Erlangen, Germany

(Communicated by Lorenzo Pareschi)

Abstract. We introduce a finite volume scheme for approximating a general

multidimensional fragmentation problem. The scheme estimates several phys-
ically significant moment functions with good accuracy, and is robust with re-

spect to use of different nonuniform daughter distribution functions. Moreover,

it possess simple mathematical formulation for defining in higher dimensions.
The efficiency of the scheme is validated over several test problems.

1. Introduction. Fragmentation or breakage, comprising all processes in which
two or more objects are created from one initial object, occurs in many natural
and industrial processes, for example: cell division, bubble break-up, milling and
grinding of particulate materials [9, 19, 22, 33].

The fragmentation behaviour, i.e. when does fragmentation occur and to what
extent, and the properties of the newly created fragments, is determined by a num-
ber of internal properties and external conditions. External conditions comprise for
instance the medium in which the fragmentation process occurs, e.g. a dry or wet
milieu, or external conditions that create forces on the initial objects, force or flow
fields. Internal properties of an object that determine the fragmentation behaviour
are for example: Object size, object shape and fractal dimension, internal porosity
(void space), and, in case of heterogeneous materials, the composition. If the initial
object is an agglomerate, i.e. consisting of a number of primary particles connected
via attractive forces or solid or liquid bridges, then the fragmentation behaviour
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depends also on the number and individual strength of the contacts between the
primary particles.

Fragmentation processes are therefore multidimensional, determined by geomet-
ric as well as material properties. Modeling of these processes, for instance for
process design and optimisation, is inherently difficult, as they are also of a multi-
scale nature: fragmentation at single-object level and fragmentation at the level
of the whole population of objects, for example all bubbles in a bubble column or
particles in a grinding process. Due to its industrial importance, several studies
have been performed to describe fragmentation at single-object level, for instance
[7, 8, 12, 30], using Discrete Element methods (DEM) or from experimental data
[22, 35, 37, 38]. Additionally, fragmentation has been studied at the level of pop-
ulations, utilising the population balance approach (PBM) [2, 14, 25, 40], allowing
the estimation of product properties, e.g. size distribution of fragments, which can
then be used in reverse to design process equipment and set-up operating condi-
tions. However, due to the multidimensional character, obtaining numerical results
is still a computational issue (as will be outlined in the following), complicating the
design and operation of fragmentation processes.

In order to approach a solution by incorporating different particle properties,
we formalize the problem under consideration: for any integer d ≥ 1, let Rd+ be
the d−dimensional real space with elements ~x = (x1, x2, . . . , xd) such that xr ≥ 0
for all r = 1, 2, . . . , d. In a general multidimensional system, the components of ~x
represent particle properties like size, energy, moisture content, shape factors etc.
In this context, there occur certain fragmentation events where one can describe
the fragmentation model by a unique variable, say size. Under such scenario all
the other variables are eliminated by some appropriate mathematical treatment.
Thus reducing the system into its one-dimensional counterpart [3]. However, this
elimination of variables is not possible for any multidimensional fragmentation.
Therefore a density function, f(~x, t) is needed to describe the particle property
distribution ~x at time t(≥ 0). Thus the multidimensional breakage population
balance equation is written as

∂f(~x, t)

∂t
=

∫ ~∞

~x

S(~y)b(~x|~y)f(~y, t) d~y − S(~x)f(~x, t) (1)

which is supplemented by the initial data

f(~x, 0) = f0(~x) ≥ ~0. (2)

The functions S(~y) and b(~x|~y) in the above equation, respectively denote the selec-
tion rate and distribution of fragmented daughter particles. In general, each of f , S
and b are non-negative functions. Here, a function is considered to be non-negative
whenever each component of that function is non-negative. The integral in (1)
basically represents the following product of integrals over the internal coordinates,∫ ~∞

~x

d~y :=

d∏
r=1

∫ ∞
xr

dyr.

For the PBEs, different moments of the particle density function play significant
roles as some of them correspond to important physical properties like total number,
mass, energy, shape factor of the particles etc., [3, 10, 16, 32]. Let us now formally
introduce the moments of the number density function f(~x, t). Considering p :=∑d
r=1 pr, where each pr is a non-negative integer, the p−th order moment of f(~x, t)
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is given by

Mp1 ,p2 ,...,pd
(t) =

∫ ~∞

~0

d∏
r=1

xprr f(~x, t) d~x. (3)

Similar to the one-dimensional problems, the zeroth momentM0,...,0(t) corresponds
to the total number of particle present in the system and the temporal change of
zeroth moment can be written as

dM0,...,0(t)

dt
=

∫ ~∞

~0

S(~y)f(~y, t) [ν(~y)− 1] dy, (4)

where ν(~y) :=
∫ ~y

0
b(~x|~y) d~x, denotes the number of fragments produced during a

breakage event.
Since in a one-dimensional model, the particle property is defined by a single

variable namely, size. Therefore, the first moment corresponds to the total mass of
the particulate system. Similarly, in a multidimensional system when each compo-
nent of ~x represents size, say length, the d−th order moment M1,...,1(t) represents
the hypervolume of the particles. This hypervolume is basically the geometry of
the d−dimensional particles. For example, in two-dimensions if the two internal
coordinates of ~x represents length and width of the particle, then hypervolume cor-
responds to the total area of the particle. A detailed description on the concept
of hypervolume can be found in the articles of [1, 26, 32]. However the above de-
scription cannot be qualitatively inherited for a general multidimensional system.
Therefore, when each component of ~x represents different particle properties, the
first moment corresponding to a certain property defines the total content of that
particular property in the system. Mathematically, the first momentM0,...,1,...,0(t),
1 in the r−th position, corresponds to the total content of the xr−property. From
relation (3), we observe that there are d first-order moments. Therefore conserva-
tion of the total content of the particle properties requires the conservation of the
first-order moments taken together [4].

In this regard, it is important to mention that the number of conserved moments
depends upon the choice of the selection function S(~y) and the breakage function
b(~x|~y). In various industrial sectors an accurate estimation of the zeroth and the
first moments is very important. For example, during the separation of minerals
from their ores in the mineral processing industry, conservation of total mineral
mass along with accurate prediction of the mineral fragments are truly essential.
Similarly in different industries involving communition of particles, conservation
of hypervolume and the zeroth moment gets basic priority. Occasionally, it is ob-
served that certain choices of fragmentation kinetics lead to the breakdown of the
mass conservative property of the particulate system [3, 32]. The phenomena lead-
ing to the mass-loss from the system during fragmentation process is well known
in the literature as ‘shattering’. Thus, in the above mentioned industrial sectors
shattering phenomenon is not at all accepted. On the other hand, a robust numer-
ical model which estimates the physically relevant moments with good accuracy is
highly acknowledged. Here, robustness of a scheme is determined by its (a) ability
(straightforward or not) to get multidimensional extension, and (b) applicability on
different nonuniform daughter distribution functions.

During a multidimensional fragmentation event, the internal physics of the break-
age function plays a significant role in determining moments which should be con-
served. This fact is well explained by [4], using schematic diagrams. Here, let
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us consider two example problems consisting of two properties to understand the
concept.

(i) Firstly, we consider a binary breakup event of a fragment (y1, y2) into (y1 − x1,
y2 − x2) and (x1, x2). The properties x1 and x2 are chosen from the intervals [0, y1]
and [0, y2], respectively. We assume that the variables y1 and y2 represent mass
and energy, respectively. Let the kinetic kernels be given by

S(y1, y2) = 1, and b(x1, x2|y1, y2) =
2

y1y2
. (5)

In this system, b is a binary breakage function and it satisfies∫ y1

0

∫ y2

0

x1b(x1, x2|y1, y2) dx2 dx1 = y1,

∫ y1

0

∫ y2

0

x2b(x1, x2|y1, y2) dx2 dx1 = y2.

Thus both the properties are conserved at each breakup event, and the moment
equation for this problem is written as

dMk,l(t)

dt
=

[
2

(k + 1)(l + 1)
− 1

]
Mk,l(t),

which can be easily solved to get the exact moments

Mk,l(t) =Mk,l(0) exp

[(
2

(k + 1)(l + 1)
− 1

)
t

]
. (6)

Thus relation (6) indicates that only the first-order moments are conserved.

(ii) We define another problem by setting

S(y1, y2) = 1, and b(x1, x2|y1, y2) =
4

y1y2
. (7)

In this case, the variables y1 and y2 represent particle length and width, respectively
along two rectangular directions. For this problem, b is a multiple breakage function
producing four particle fragments each of which undergoes further fragmentation
equally likely. It is observed that b satisfies∫ y1

0

∫ y2

0

x1x2b(x1, x2|y1, y2) dx2 dx1 = y1y2,

and the exact moments are obtained as

Mk,l(t) =Mk,l(0) exp

[(
4

(k + 1)(l + 1)
− 1

)
t

]
. (8)

Unlike the previous example, the area of the particles represented by the first-cross
moment M1,1(t) is conserved here, but it fails to conserve the first-order moments.

The above mentioned examples support the fact that conservation of the mo-
ments depend upon the choice of the breakage function b(~x|~y). Therefore defining

φ(~x) :=
∑d
r=1 xr, the breakage function b(~x|~y) requires to satisfy the relation∫ ~y

~0

φ(~x)b(~x|~y) d~x = φ(~y), (9)

in order to obey the first-order moment conservation law, during per fragmentation
event in d−dimensions.
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Similarly by defining φ̃(~x) :=
∏d
r=1 xr, the hypervolume conservation law is

obeyed when b follows the relation

∫ ~y

~0

φ̃(~x)b(~x|~y) d~y = φ̃(~y). (10)

The advances in high-speed computing have attracted many researchers to com-
pute and simulate different particulate events. Let us have a brief review of the
popular numerical methods developed in recent years to approximate the multidi-
mensional PBEs. Primarily in most of the articles, authors have adopted different
methodologies to design numerical schemes approximating the aggregation prob-
lems. In the literature, the sectional methods by [17, 18] (cell average technique),
[20, 21, 36] (fixed pivot technique), the method of higher-order moment-conserving
classes by [5, 6], method of moments by [24, 27, 39], by Monte-Carlo simulations
[15, 27, 28, 34], finite volume methods by [11, 23] are well recognized because of their
efficiency to predict different moments with good accuracy. However, the considera-
tion of multidimensional fragmentation is limited to the works of [5, 6, 21], where the
authors have designed their respective schemes to approximate the two-dimensional
coupled aggregation-fragmentation equations. The work of [21] solves the fragmen-
tation problems for uniform daughter distribution function. It is very difficult to
design their schemes for daughter distribution functions which are nonuniform in
nature. Moreover, extension of the [21] scheme for three or higher dimensions can
be treated as a new research problem. On the other hand, the works [5] and [6]
are quite similar. The method was initially proposed by [5] and then applied to
solve a physical problem in [6]. In this case also, a unified formulation of [5] to
solve generalized multidimensional fragmentation problems is difficult, and can be
treated as the scope of future research. In this regard, the schemes based on finite
volume methods are more adaptable for solving multidimensional problems. Unlike
the above methods, a thorough reformulation of the finite volume scheme is not
required to extend it in higher dimensions [11, 13, 31].

To our knowledge, approximation of multidimensional breakage problems using
finite volume methods are not available in the literature till date. In this regard,
an efficient numerical scheme approximating the multidimensional fragmentation
models is in high demand in several industries. Here, efficiency of a numerical
model is assessed upon its robustness and ability to predict different physical prop-
erties of the particulate system. Therefore we propose two finite volume schemes,
designed to solve the generalized multidimensional fragmentation problems over a
rectangular discretized domain. The one dimensional form of the scheme is intro-
duced by [29]. The new schemes are formulated to predict the physically significant
moments namely, the zeroth moment, the first-order moments and the d−th order
moment representing particle hypervolume with good accuracy. The key feature of
the schemes is that suitably defined weight functions control the number of con-
served moments. Our objective is two-fold, (i) conserve the total particle properties
represented by different first moments in a general multidimensional system, and
(ii) conserve particle hypervolume, when each particle component represents size.
Additionally in both the cases, we need to get an efficient estimation of the total
particle number present in the system.

In the following section, we present a detailed discussion on the development
of the proposed models. Some important follow through observations are also
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discussed in Section 2. Later in Section 3, we validate the efficiency of the proposed
models by considering sveral test problems with two and three particle properties.

2. The multidimensional schemes. In order to perform numerical computa-

tions, we set a finite range of the computational domain. Let ~X := (X1, X2, . . . , Xd),
where each of Xr are sufficiently large positive real numbers, and hence define

Ξ :=
∏d
r=1]0, Xr] to be the truncated d−dimensional Cartesian product space. Un-

der this consideration, the truncated equation (1) is written as

∂f(~x, t)

∂t
=

∫ ~X

~x

S(~y)b(~x|~y)f(~y, t) d~y − S(~x)f(~x, t). (11)

Let Ξ is further discretized into I(< ∞) number of subcells Ξi :=
∏d
r=1]xir−1/2,

xir+1/2], where i = 1, 2, . . . , I with the general convention x1r−1/2 = 0 and xIr+1/2 =
Xr for all r = 1, 2, . . . , d. Thus, one can relate Ξi to an interval in one-dimensional
space, a rectangular area in two-dimensions, a cuboidal space in three-dimensions,
so on and so forth. Also, let Vi be the volume of the cell Ξi, and the average particle
density in each of the subspace Ξi is defined by

fi =
1

Vi

∫
Ξi

f(~x, t) d~x, i = 1, 2, . . . , I. (12)

Let us consider ~xi := (xi1 , xi2 , . . . , xid) as the representative of the cell Ξi, with

the usual ‘mid-point’ convention xir :=
xir+1/2+xir−1/2

2 , for all r = 1, 2, . . . , d and

i = 1, 2, . . . , I. Let f̂i denotes the numerical approximation of fi over each Ξi
and Si = S(~xi). Therefore integrating (11) over each Ξi, we obtain the following
semi-discrete formulation

df̂i
dt

=

I∑
k=i

Skf̂kBi,k
Vk
Vi
− Sif̂i, (13)

where

Bi,k :=

∫ Pk
i

~xi−1/2

b(~x|~xk) d~x, with P ki :=

{
~xi, when k = i,
~xi+1/2, otherwise.

(14)

For brevity, we call the formulation (13) as Scheme
−0. Let us now validate Scheme−0 over the example (i), from the previous section,
with two internal parameters. Therefore, setting S(y1, y2) = 1, b(x1, x2|y1, y2) =

2
y1y2

, we compute zeroth and first moments as predicted by Scheme−0 using ODE45

solver in Matlab over a 15 × 15 rectangular mesh. Figure 1 shows that the pre-
diction of the normalized zeroth moment by Scheme−0 is in good agreement with
the exact results. Here, normalization of moments is done by dividing the values
of the moments at different times by the initial value of the moment. However,
Scheme−0 fails to conserve the total content of each component. In this regard, we
calculate the discrete zeroth and the first moment obtained from the formulation
(13). Taking sum over i on both sides of (13), we get

d

dt

I∑
i=1

f̂iVi =

I∑
i=1

I∑
k=i

SkBi,kf̂kVk −
I∑
i=1

Sif̂iVi.
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Figure 1. Exact and numerical values of the normalized moments.

Changing the order of the sums and simplifying, we get

d

dt

I∑
i=1

f̂iVi =

I∑
k=1

Skf̂kVk

k∑
i=1

Bi,k −
I∑
k=1

Skf̂kVk =

I∑
k=1

Skf̂kVk

[
k∑
i=1

Bi,k − 1

]

=

I∑
i=1

Sif̂iVi [ν̂(~xi)− 1] . (15)

It can be observed that relation (15) is basically the discrete analogy of the time
derivative of the continuous zeroth moment (4). Thus, a scheme which obeys (15)
is expected to predict the zeroth moment with good accuracy.

Let us now calculate the total discrete first moment obtained from Scheme−0.
In this regard, let us define the function Φ(~xi) as the sum of all particle size rep-

resentatives xir , that is, Φ(~xi) :=
∑d
r=1 xir . Therefore, multiplying both sides by

Φ(~xi) and taking sum over i, we get

d

dt

I∑
i=1

Φ(~xi)f̂iVi =

I∑
i=1

Φ(~xi)

I∑
k=i

SkBi,kf̂kVk −
I∑
i=1

Φ(~xi)Sif̂iVi.

Proceeding in a similar fashion as done above, we can write

d

dt

I∑
i=1

Φ(~xi)f̂iVi =

I∑
k=1

Skf̂kVk

[
k∑
i=1

Φ(~xi)Bi,k − Φ(~xk)

]
.

In this case, b(~x|~y) satisfies the first-order moment conservation law (9). Therefore,
we get

Φ(~xk) =

k∑
i=1

∫ Pk
i

~xir−1/2

Φ(~x)b(~x|~xk) d~x.

Hence,

d

dt

I∑
i=1

Φ(~xi)f̂iVi =

I∑
k=1

Skf̂kVk

k∑
i=1

∫ Pk
i

~xir−1/2

[Φ(~xi)− Φ(~x)] b(~x|~xk) d~x.
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It is to be noted that a scheme follows the discrete first-order moment conservation
law whenever

d

dt

I∑
i=1

Φ(~xi)f̂iVi = 0. (16)

However this criterion is not true for the Scheme−0, except the trivial situation
where either S or b or both are zero. Therefore in the following study, our intention
to rectify Scheme−0 such that the first-order moment conservation law is obeyed.

2.1. Conservation of first-order moments. Let us first consider general mul-
tidimensional fragmentation event, where the components of ~x represent different
particle properties like mass, enthalpy etc. Therefore to conserve the total first-
order moments, the Scheme−0 is redefined by multiplying a weight function Θi

with the second term in the right hand side, as follows

df̂i
dt

=

I∑
k=i

Skf̂kBi,k
Vk
Vi
−ΘiSif̂i, (17)

with

Θi :=
1

Φ(~xi)

i∑
j=1

Φ(~xj)Bj,i, i = 1, 2, . . . , I. (18)

Since the formulation (17) contains one weight function, so we name it Scheme−1a
for our future reference. Let us now state and prove the following proposition.

Proposition 1. The discrete system (17) is in agrement with relation (16), that
is, Scheme−1a conserves the total first-order moments of the system.

Proof. The proposition can easily be proved by performing similar calculations as
done in the preceding section.

The above proposition suggests that Scheme−1a obeys the first-order moment
conserving criterion of the multidimensional system. However, Scheme−1a does not
follows the discrete formulation (15). Taking sum over i on both sides of (17), we
get

d

dt

I∑
i=1

f̂iVi =

I∑
i=1

Sif̂iVi [ν̂(~xi)−Θi] .

Therefore, from the previous observation we can say that Scheme−1a cannot predict
the total particle number with good accuracy. Since, our aim is to obtain a scheme
which conserves the total first-order moments as well as, predicts zeroth moment
efficiently. Therefore, the formulation (13) is further modified by introducing two
weights in the right hand side, to get

df̂i
dt

=

I∑
k=i

Ψb
kSkf̂kBi,k

Vk
Vi
−Ψd

iSif̂i, (19)

where,

Ψb
k =

Φ(~xk) [ν̂(~xk)− 1]∑k
j=1 [Φ(~xk)− Φ(~xj)]Bj,k

, and Ψd
i =

Ψb
i

Φ(~xj)

i∑
j=1

Φ(~xj)Bj,i. (20)
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Considering that formulation (19) involves two weight functions, we call it Scheme
−2a. Basically the weight functions, Ψb

k and Ψd
i control particle distribution in

order to conserve the zeroth and first moments. Let us now state and prove the
following proposition.

Proposition 2. The numerical model (19) conserves the total first-order moments
(16), and also obeys the discrete zeroth number prediction given by the relation (15),
whenever the weight functions Ψb

k and Ψd
k satisfy the formulations of (20).

Proof. We compute the total temporal change of the discrete first moments, and
get

d

dt

I∑
i=1

Φ(~xi)f̂iVi =

I∑
k=1

Skf̂kVk

[
Ψb
k

k∑
i=1

Φ(~xi)Bi,k −Ψd
kΦ(~xk)

]
.

Substituting Ψd
k (20), we get

d

dt

I∑
i=1

Φ(~xi)f̂iVi =

I∑
k=1

Skf̂kVkΨb
k

 k∑
i=1

Φ(~xi)Bi,k −
k∑
j=1

Φ(~xj)Bj,k

 = 0.

The temporal change of discrete zeroth moment is computed as follows,

d

dt

I∑
i=1

f̂iVi =

I∑
k=1

Skf̂kVk

[
Ψb
k

k∑
i=1

Bi,k −Ψd
k

]

=

I∑
k=1

Skf̂kVkΨb
k

 k∑
i=1

Bi,k −
1

Φ(~xk)

k∑
j=1

Φ(~xj)Bj,k


=

I∑
k=1

Skf̂kVk
[ν̂(~xk)− 1]∑k

j=1 [Φ(~xk)− Φ(~xj)]Bj,k

k∑
i=1

[Φ(~xk)− Φ(~xi)]Bi,k

=

I∑
k=1

Skf̂kVk [ν̂(~xk)− 1] .

Thus Scheme−2a (19) conserves the first-order moments, and also follows the tem-
poral change of discrete zeroth moment (15).

2.2. Conservation of hypervolume. We now consider a fragmentation event,
where each component of ~x represents particle size. As mentioned in Section 1, the
hypervolume of the particles plays an important role in several real life occasions, as
it represents the geometry of the particles. Therefore depending upon the situation,
the hypervolume also needs to get conserved, that is, a numerical model should obey

d

dt

I∑
i=1

Φ̃(~xi)f̂iVi = 0, (21)

where,

Φ̃(~xi) :=

d∏
r=1

xir .

In this part of our study, we redefine the weight functions such that the new set
of schemes conserve particle hypervolume. Moreover, during hypervolume conser-
vation per fragmentation event, the breakage function b(~x|~y) should satisfy (10).
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Therefore, Scheme−1b is written as

df̂i
dt

=

I∑
k=i

Skf̂kBi,k
Vk
Vi
− Θ̃iSif̂i (22)

with the modified weight

Θ̃i =
1

Φ̃(~xi)

i∑
j=1

Φ̃(~xj)Bj,i, (23)

and Scheme−2b is written as

df̂i
dt

=

I∑
k=i

Ψ̃b
kSkf̂kBi,k

Vk
Vi
− Ψ̃d

iSif̂i (24)

having the modified weights

Ψ̃b
k =

Φ̃(~xk) [ν̂(~xk)− 1]∑k
j=1

[
Φ̃(~xk)− Φ̃(~xj)

]
Bj,k

, and Ψ̃d
i =

Ψ̃b
i

Φ̃(~xi)

I∑
j=1

Φ̃(~xj)Bj,i. (25)

It can be easily proved that both the Scheme−1b (22) and Scheme−2b (24) follows
hypervolume conservation law (21). Additionally, Scheme−2b (24) follows the dis-
crete number formulation given by (15). The proofs of these claims bears quite
similarity with the previous ones, therefore we omit them here.

Therefore, in this section we systematically propose two sets of finite volume
schemes. The first set consisting of Scheme−1a [eqs (17), (18)] and Scheme−2a [eqs
(19), (20)] are basically designed to conserve the sum of the first-order moments
(16). Theoretically, Scheme−2a estimates the evolution of total number of particles
with high accuracy. In the second set, two models Scheme−1b [eqs (22), (23)] and
Scheme−2b [eqs (24), (25)] are designed to conserve the particle hypervolume (21)
during a breakage event. In this case also, the Scheme−2b is expected to estimate
the zeroth moment with good accuracy. Based on their ability to predict two
physically significant moments, Scheme−2a and Scheme−2b are the desired models
which should be used to solve multidimensional fragmentation events.

Remark 1. It is to be noted that the weight functions corresponding to the first-
order moment and hypervolume conservation are interrelated. Basically, it depends
upon the choice of the breakage function b(~x|~y). Therefore, the factor Φ (~xi) rep-
resenting the sum of the pivots in the first-order moment conservative models is
simply replaced by the factor Φ̃ (~xi) representing the product of the pivots in the
hypervolume conservative models.

3. Test cases and numerical details. In this section, we validate the efficiency of
Scheme−1a (17), Scheme−2a (19) and Scheme−1b (22), Scheme−2b (24) by consid-
ering eight test problems defined by two particle properties, and two test problems
with three particle properties. As mentioned in Section 1, three dimensional exten-
sion of the schemes of [21] and [5] are very difficult task and can be treated as a scope
of future research. Therefore, to maintain uniformity throughout the two and three
dimensional test problems presented in the current paper, we have not included
the schemes of [5, 21] for comparison. Moreover, computing the particle property
distribution and its moments is a challenging task for multidimensional breakage
equations, as the literature lacks to provide the exact solutions in closed form. So,
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it is not always possible to compare the numerical number density against the ex-
act value. Instead, we consider certain sample problems with physically relevant
daughter distribution function for which the moments can be calculated exactly.
The example problems are gathered from the articles of [4, 5, 16, 26].

In the following study, the two-dimensional test problems are grouped into two
sets. First set consists of four test problems which are chosen to conserve the
first-order moments (16). The second set with another four problems which con-
serve hypervolume of particle property distribution (21). Moreover, for each of the
above mentioned test problems, we choose both uniform and nonuniform breakage
functions to validate the efficiency of the proposed schemes.

Initially, we consider a size-independent constant selection function S1(x1, x2) =
1, along with the following daughter distribution functions

b1(x1, x2|y1, y2) =
2

y1y2
, and b2(x1, x2|y1, y2) = 2δ

(
x1 −

y1

2

)
δ
(
x2 −

y2

2

)
.

(26)

Here, b1 represents the uniform distribution of daughter particles, and b2 represents
a nonuniform symmetric daughter distribution function. Both the functions b1 and
b2 satisfy relation (9). We choose a mono-dispersed initial data

f(x1, x2, 0) = δ(x1 − 1)δ(x2 − 1)

for test case 1. The moment function for b1 has already been calculated in relation
(6), and for b2 it is calculated in [5] and is written as

Mk,l(t) =Mk,l(0) exp
[(

21−k−l − 1
)
t
]
.

For mono-dispersed initial data, we get Mk,l(0) = 1.
In the second instance, we consider a size dependent selection function S2(x1, x2)

= x1 + x2. Both the breakage functions b1 and b2 mentioned above, are recalled
here along with the mono-dispersed initial data. In this case, only the moments
M0,0(t),M1,0(t) andM0,1(t) can be calculated exactly. Interestingly, the moment
functions obtained for both the daughter distribution function are same, and are
given by

M1,0(t) =M0,1(t) = 1 and M0,0(t) = 1 + 2t.

Next to it, four examples are considered where the daughter distribution functions
are designed to conserve particle hypervolume, that is, the breakage functions sat-
isfy relation (10). In this regard, we first consider a size-independent selection
function S3(x1, x2) = 1. The following breakage functions are chosen for numerical
evaluation

b3(x1, x2|y1, y2) =
4

y1y2
, and b4(x1, x2|y1, y2) =

y1δ (x1 − y1) + y2δ (x2 − y2)

y1y2
.

(27)

Physical interpretation of the breakage function b3 can be found in the article of
[16], and that of b4 in [26]. Relation (8) gives the closed form of exact moments
with kernels S3 and b3. Similarly, for S3 and b4 the following exact moments are
calculated as

M0,0(t) = exp(t), M1,0(t) +M0,1(t) = exp(t/2) and M1,1(t) = 1.

Later we consider two problems with breakage functions b3 and b4 but with a size
dependent selection function S4(x1, x2) = x1x2. For both the breakage functions
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b3 and b4, we are able to find the exact M0,0(t) and M1,1(t) moments only. The
exact moments for the problem with kernels S4, b3 are written as

M1,1(t) = 1 and M0,0(t) = 1 + 3t.

Similarly, the moments for breakage function b4 and selection function S4 are cal-
culated as

M1,1(t) = 1 and M0,0(t) = 1 + t.

In the later part of this study, we consider one example from each of the above
mentioned problem sets in their three-dimensional variant. A three-dimensional
mono-dispersed initial data is also considered to support the problems. Here, two
test problems are defined with the following kernels

(a) S5(x1, x2, x3) = x1 + x2 + x3,

b5(x1, x2, x3|y1, y2, y3) = 2δ
(
x1 − y1

2

)
δ
(
x2 − y2

2

)
δ
(
x3 − y3

2

)
, and

(b) S6(x1, x2, x3) = x1x2x3, b6(x1, x2, x3|y1, y2, y3) = 8
y1y2y3

.

The exact moments corresponding to the the kernels S5, b5 are calculated as

M1,0,0(t) =M1,0,1(t) =M0,0,1(t) = 1 and M0,0,0(t) = 1 + 3t.

The sample problem with kernels S5, b5 is set to conserve the first-order moments
(16). On the other hand, the sample problem with kernels S6, b6 conserves particle
hypervolume (21), and the exact moments are written as

M1,1,1(t) = 1 and M0,0,0(t) = 1 + 7t.

In the following tables, we summarize all the test problems mentioned above for a
smooth reading of the subsequent section. From Table 1, we find that a general
closed form of the higher order exact moments can only be found for the test case 1,
2 and 5. For rest of the sample problems only first few moments can be calculated
exactly. It can be observed that test case 9 is a straightforward extension of test
case 4 with symmetric breakage function, and the test case 10 is an extension of
test case 7 with uniform breakage function in three-dimensions.

Test case S(x1, x2) b(x1, x2|y1, y2) Exact moments

1 1 2
y1y2

Mk,l(t) = exp
[(

2
(k+1)(l+1) − 1

)
t
]

2 1 2δ
(
x1 − y1

2

)
δ
(
x2 − y2

2

) Mk,l(t) = exp
[(

21−k−l − 1
)
t
]

3 x1 + x2
2

y1y2

M1,0(t) =M0,1(t) = 1,
M0,0(t) = 1 + 2t

4 x1 + x2 2δ
(
x1 − y1

2

)
δ
(
x2 − y2

2

) M1,0(t) =M0,1(t) = 1,
M0,0(t) = 1 + 2t

5 1 4
y1y2

Mk,l(t) = exp
[(

4
(k+1)(l+1) − 1

)
t
]

6 1 y1δ(x1−y1)+y2δ(x2−y2)
y1y2

M1,1(t) = 1, M0,0(t) = exp(t),
M1,0(t) +M0,1(t) = exp(t/2)

7 x1 + x2
4

y1y2
M1,1(t) = 1, M0,0(t) = 1 + 3t

8 x1 + x2
y1δ(x1−y1)+y2δ(x2−y2)

y1y2
M1,1(t) = 1, M0,0(t) = 1 + t

Table 1. Summary of the selected test problems in two dimensions.
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Test case S(x1, x2, x3) b(x1, x2, x3|y1, y2, y3) Exact moments

9 x1 + x2 + x3 2δ
(
x1 − y1

2

)
δ
(
x2 − y2

2

)
δ
(
x3 − y3

2

) M1,0,0(t) =M1,0,1(t) = 1,
M0,0,1(t) = 1,
M0,0,0(t) = 1 + 3t

10 x1x2x3
8

y1y2y3

M1,1,1(t) = 1,
M0,0,0(t) = 1 + 7t

Table 2. Summary of the selected test problems in three dimensions.

To maintain uniformity, we consider the two-dimensional computation domain
as R2 := [10−9, 1] × [10−9, 1]. In all the test problems, R2 is divided into 15 × 15
nonuniform rectangular meshes (or grids). These meshes are generated geomet-
rically bearing relation

(
xi+1/2, yi+1/2

)
=
(
rxi−1/2, ryi−1/2

)
, where r > 1 is the

geometric ratio. Since, the mid-points of each subcells are defined as the cell rep-
resentatives (or pivots), therefore a scaling of the initial data becomes inevitable.
Thus considering (l,m) as the pivot of the last subcell, the redefined initial data
becomes

f(x1, x2, 0) = δ(x1 − l)δ(x2 −m).

Similar to above, we consider the domain R3 := [10−9, 1]× [10−9, 1]× [10−9, 1] and
discretize it in 15 × 10 × 15 nonuniform meshes. The initial data is also scaled
accordingly.

The efficiency of the proposed schemes is analyzed both qualitatively and quan-
titatively. The qualitative comparison includes the graphical representation of the
moment functions, as presented in the literature by [13, 31]. To obtain a systematic
plot, the moments are sorted in decreasing order of their exact values. On the other
hand, weighted relative errors are evaluated at different times to determine the ac-
curacy of the moment functions quantitatively. A general measure of the weighted
relative error for two-dimensional problems is given as [31]

µi,j(t) :=

∣∣∣∣∣Mana
i,j (t)−Mnum

i,j (t)

Mana
i,j (t)

∣∣∣∣∣ .
Furthermore to obtain a clear visibility of different markers, all the figures are
plotted in linear scale along horizontal-axis and in logarithmic scales along the
vertical-axis. All the computations in this part are carried till T = 5 in a standard
computer with i3 (2.2 GHz r.p.m.) processor and 3GB RAM. We use Ode45 solver
in Matlab to compute the system of differential equations. The CPU usage time
required for solving the test problems are also included.

4. Results and discussion.

4.1. Conservation of first-order moment. Size independent selection function:
In Figure 2, graphical validation of the dimensionless moments M0,0(t), M1,0(t)
and M1,1(t) are presented for the test case 1 (Figure 2a) and test case 2 (Figure
2b). The quantitative analysis of the proposed schemes is presented in the tables
3, 4, 5 and 6. The tables 3 and 4 contain weighted relative errors accumulated to
estimate the three moments M0,0(t), M1,0(t) and M1,1(t) using Scheme−1a (17)
and Scheme−2a (19). Table 3 represents the errors for the test case 1, and Table 4
corresponds the same for the test case 2. In some occasions, higher order moments
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Figure 2. Exact and numerical values of the normalized moments
with size independent selection function.

play important roles. Therefore for a complete quantitative analysis, we present
the weighted relative errors accumulated by the schemes to estimate higher order
moments over different grids at the end time t = 5. Similar, presentation of the
errors can be found in the article of [5]. The data for test case 1 are given in Table
5 and that of test case 2 in Table 6.

From Figure 2, it is observed that Scheme−2a conserves the first momentM1,0(t)
and predicts the zeroth moment M0,0(t) with high accuracy. Thus rectifying the
drawbacks of Scheme−0 (13). It also produces a good estimation the first cross
momentM1,1(t). The estimation of the momentM1,1(t) improves with further re-
finement of the meshes. On the other hand, Scheme−1a conserves the first moment,
but the prediction of the zeroth moment M0,0(t) and the cross moment M1,1(t) is
quite poor. This observation is also validated quantitatively by the weighted error
Table 3 and Table 4.
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Scheme−1a Scheme−2a

t µ0,0(t) µ1,0(t) + µ0,1(t) µ1,1(t) µ0,0(t) µ1,0(t) + µ0,1(t) µ1,1(t)

1 0.40989 3.3307E-16 0.19613 4.5897E-06 1.7764E-15 0.16397
2 0.65177 2.2204E-16 0.43072 2.5283E-06 1.7764E-15 0.30105
3 0.79452 2.2204E-16 0.51132 2.8065E-05 1.3323E-15 0.41566
4 0.87877 4.4409E-16 0.62470 4.6254E-05 1.3323E-15 0.51147
5 0.84305 2.2204E-16 0.76290 1.4383E-05 4.4409E-16 0.59157

Table 3. Relative error for the weighted moments at different
times for the test case 1.

The Scheme−1a conserves the sum of all first-order moments. The other mo-
ments, namely M0,0(t) and M1,1(t) are not conserved by Scheme−1a. From the
data given in Table 3 and Table 4, we observe that the error accumulated to es-
timate the conserved first-order moments is negligible as compared to the errors
accumulated to estimate the non-conserved moments M0,0(t) and M1,1(t). Simi-
larly, Scheme−2a efficiently estimates the zeroth and first-order moments, but fails
to predict M1,1(t) with good accuracy.

Scheme−1a Scheme−2a

t µ0,0(t) µ1,0(t) + µ0,1(t) µ1,1(t) µ0,0(t) µ1,0(t) + µ0,1(t) µ1,1(t)

1 0.35822 4.3652E-09 0.51745 5.8726E-09 4.3652E-09 0.44845
2 0.84477 4.3652E-08 0.54865 6.5772E-08 4.3652E-09 0.41034
3 1.5056 4.3652E-08 0.57071 8.5278E-08 4.3652E-09 0.36958
4 2.1524 4.3652E-08 0.59846 6.8704E-08 4.3652E-09 0.33718
5 3.2816 4.3652E-08 0.62442 6.7941E-08 4.3652E-09 0.29138

Table 4. Relative error for the weighted moments at different
times for the test case 2.

To solve test case 1 and test case 2, the CPU times taken by Scheme−1a is
approximately 1s, and that by Scheme−2a is 2s (nearly).

From Table 5 and Table 6, we observe that the estimation of the higher order
moments are not as good as the zeroth and the first order moments despite of several
refinement of the meshes.

Size dependent selection function: Here, we discuss the efficiency of the proposed
schemes for solving test case 3 and test case 4. Numerical values of the moments
M0,0(t) and M1,0(t) are plotted against their exact values in Figure 3 and the
weighted errors are calculated in Table 7 and Table 8. Figure 3, Table 7 and Table
8 indicate that Scheme−2a is highly accurate in estimating the moments compared
to Scheme−1a. The exact higher order moments can not be obtained for this
problem.

4.2. Conservation of hypervolume. Size independent selection function: In Fig-
ure 4, we plot the numerical values of the moments M0,0(t), M1,0(t) and M1,1(t)
obtained from Scheme−1b (22) and Scheme−2b (24) against their exact values. On
the other hand, Table 10 and Table 11 include weighted error of the above moments



94 JITRAJ SAHA, NILIMA DAS, JITENDRA KUMAR AND ANDREAS BÜCK

Scheme−1a Scheme−2a

(Grids) (Grids)

Moments 15× 15 20× 20 25× 25 15× 15 20× 20 25× 25

µ2,0(t) 0.12213 0.12209 3.7968E-02 0.20312 0.26686 0.28581

µ0,2(t) 0.12213 0.12209 3.7968E-02 0.20312 0.26686 0.28581

µ3,0(t) 0.39737 0.11985 4.3010E-02 0.21663 0.27822 8.4753E-02

µ2,1(t) 0.53920 0.53003 0.48809 0.87975 0.80544 0.73234

µ1,2(t) 0.53920 0.53003 0.48809 0.87975 0.80544 0.73234

µ3,0(t) 0.39737 0.11985 4.3010E-02 0.21663 0.27822 8.4753E-02

Table 5. Relative error for higher order weighted moments using
different computational grids for the test case 1 at t = 5.

Scheme−1a Scheme−2a

(Grids) (Grids)

Moments 15× 15 20× 20 25× 25 15× 15 20× 20 25× 25

µ2,0(t) 0.46289 0.43660 0.43344 0.43994 0.29138 5.1652E-02

µ0,2(t) 0.46289 0.43660 0.43344 0.43994 0.29138 5.1652E-02

µ3,0(t) 0.57837 0.53984 0.40542 0.58212 0.31483 0.19485

µ2,1(t) 0.57837 0.53984 0.40542 0.58212 0.31483 0.19485

µ1,2(t) 0.57837 0.53984 0.40542 0.58212 0.31483 0.19485

µ3,0(t) 0.57837 0.53984 0.40542 0.58212 0.31483 0.19485

Table 6. Relative error for higher order weighted moments using
different computational grids for the test case 2 at t = 5.

Scheme−1a Scheme−2a

t µ0,0(t) µ1,0(t) + µ0,1(t) µ0,0(t) µ1,0(t) + µ0,1(t)

1 0.29315 2.2204E-16 7.5670E-08 2.2204E-16
2 0.37684 2.2204E-16 1.2102E-08 2.2204E-16
3 0.41648 4.4409E-16 7.1239E-07 2.2204E-16
4 0.43960 1.3323E-15 2.6133E-07 4.4409E-16
5 0.45475 1.1102E-15 7.1965E-06 2.2204E-16

Table 7. Relative error for the weighted moments at different
times for the test case 3.
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(a) Test case 3
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Figure 3. Exact and numerical values of the normalized moments
with size dependent selection function.

Scheme−1a Scheme−2a

t µ0,0(t) µ1,0(t) + µ0,1(t) µ0,0(t) µ1,0(t) + µ0,1(t)

1 0.15457 4.3652E-15 1.5366E-16 4.3652E-15
2 0.21110 4.3652E-15 1.2179E-16 4.3652E-15
3 0.23833 4.3652E-15 1.7218E-16 4.3652E-15
4 0.24726 4.3652E-15 1.3315E-16 4.3652E-15
5 0.25532 4.3652E-15 2.1709E-16 4.3652E-15

Table 8. Relative error for the weighted moments at different
times for the test case 4.
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Method Test case 3 Test case 4
Scheme−1a 1 4
Scheme−2a 1 7

Table 9. CPU usage time (in seconds) taken to solve test cases 3 and 4.

Scheme−1b Scheme−2b

t µ0,0(t) µ1,0(t) + µ0,1(t) µ1,1(t) µ0,0(t) µ1,0(t) + µ0,1(t) µ1,1(t)

1 0.83984 0.40989 3.3307E-16 2.7510E-06 0.23775 6.6613E-16
2 0.97435 0.65177 4.4409E-16 1.3740E-06 0.53049 4.4409E-16
3 0.99590 0.79452 1.2212E-15 3.1276E-05 0.87720 1.7764E-15
4 0.99935 0.87877 1.8874E-15 4.7495E-05 0.92423 1.5543E-15
5 0.99990 0.92852 1.9984E-15 1.4680E-05 0.95464 1.7764E-15

Table 10. Relative error for the weighted moments at different
times for the test case 5.

Scheme−1b Scheme−2b

t µ0,0(t) µ1,0(t) + µ0,1(t) µ1,1(t) µ0,0(t) µ1,0(t) + µ0,1(t) µ1,1(t)

1 0.24477 0.11131 4.8411E-15 9.7725E-07 1.4316E-03 4.8411E-15
2 0.42963 0.21084 4.8411E-15 1.0209E-06 3.1159E-02 4.8411E-15
3 0.56924 0.35725 4.8411E-15 1.3395E-06 5.9667E-02 4.8411E-15
4 0.65103 0.51075 4.8411E-15 1.6825E-06 9.3380E-01 4.8411E-15
5 0.73647 0.79839 4.8411E-15 1.7411E-06 1.6495E-01 4.8411E-15

Table 11. Relative error for the weighted moments at different
times for the test case 6.

obtained from test case 5 and test case 6, respectively. However, the higher order
moments can be calculated exactly only for the test case 5. Therefore, the quanti-
tative error analysis for Scheme−1b and Scheme−2b for higher moments are given
in Table 12. As expected, Scheme−2b produces highly improved estimation of the
momentsM0,0(t) andM1,1(t) over Scheme−1b. From Figure 4a, it is observed that
Scheme−2b overpredicts the first moment M1,0(t) for the kernel b3. However, the
accuracy increases considerably for test problem 6 over the same number of meshes
[Figure 4b].

In the above tables, we observe that Scheme−1b conserves the momentM1,1(t),
whereas the other non-conserved moments are poorly predicted. Similarly, Scheme−
2b accumulates nearly negligible error to predict the conservedM0,0(t) andM1,1(t)
moments. However, it estimates the other non-conserved moments poorly. The
CPU time taken by Scheme−1b to solve test cases 5 and 6 is approximately 1s each.
Similarly, time taken by Scheme−2b is nearly 2s for both the problems.

Size dependent selection function: The Figure 5, Table 13 and Table 14 validate
that the Scheme−2b predicts the zeroth and first cross moments of the particles
property distribution with high accuracy. Moreover, both the schemes take less
than 1s to perform the computations.

The CPU usage time (in seconds) taken to solve test cases 7 and 8 is nearly 1s.
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Figure 4. Exact and numerical values of the normalized moments
with size independent selection function.

4.3. Test cases in three-dimensions. In this part, Figure 6a represents the quali-
tative efficiency of the proposed schemes to predict different moments. Conservation
of the total first-order moments is illustrated in Figure 6a. Similarly, the conser-
vation of the third-order moment corresponding to particle hypervolume is shown
in Figure 6b. Additionally, Table 15 and Table 16 represent the weighted rela-
tive errors accumulated by the two schemes at different times for the test cases 9
and 10, respectively. In both the cases, we find that the schemes with two weight
functions outperforms the schemes with one weight function to estimate the zeroth
moment representing the total particle number. Interestingly, Table 17 depicts that
both the schemes consume low CPU time to perform the computations for a three
dimensional model. Other higher order moments cannot be evaluated exactly.

Here, Scheme−1a is the three-dimensional extension of the models (17), (18).
Similarly, Scheme−2a, Scheme−1b and Scheme−2b represent their extended models.
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Scheme−1a Scheme−2a

(Grids) (Grids)

Moments 15× 15 20× 20 25× 25 15× 15 20× 20 25× 25

µ2,0(t) 0.66871 0.54513 0.31947 4.2865 1.7192 0.81177

µ0,2(t) 0.66871 0.54513 0.31947 4.2865 1.7192 0.81177

µ3,0(t) 3.1432 2.0981 0.40542 10.784 3.8650 1.7161

µ2,1(t) 0.43645 0.47180 0.47048 0.59341 0.58034 0.54996

µ1,2(t) 0.43645 0.47180 0.47048 0.59341 0.58034 0.54996

µ3,0(t) 3.1432 2.0981 1.1880 10.784 3.8650 1.7161

Table 12. Relative error for higher order weighted moments using
different computational grids for the test case 5 at t = 5.

Scheme−1b Scheme−2b

t µ0,0(t) µ1,1(t) µ0,0(t) µ1,1(t)

1 0.32971 2.2204E-16 2.0426E-16 2.2204E-16
2 0.42818 2.2204E-16 2.6527E-16 4.4409E-16
3 0.47552 2.2204E-16 1.9640E-16 2.2204E-16
4 0.50335 2.2204E-16 1.5592E-16 2.2204E-16
5 0.52166 4.4409E-16 2.5855E-16 1.1102E-16

Table 13. Relative error for the weighted moments at different
times for the test case 7.

Scheme−1b Scheme−2b

t µ0,0(t) µ1,1(t) µ0,0(t) µ1,1(t)

1 9.3859E-02 4.8411E-16 1.4390E-16 4.8411E-16
2 0.13885 4.8411E-16 2.1288E-16 4.8411E-16
3 0.15973 4.8411E-16 1.7811E-16 4.8411E-16
4 0.17886 4.8411E-16 4.3876E-16 4.8411E-16
5 0.19219 4.8411E-16 1.2407E-16 4.8411E-16

Table 14. Relative error for the weighted moments at different
times for the test case 8.

Remark 2. In most of the fragmentation events, particle number, total content of
particle properties and hypervolume play major roles and the above discussion en-
sures that the new schemes estimate above properties with high accuracy. However,
there may occur certain events where the other higher order moments require to
be estimated accurately. In that scenario, the proposed methodology is adaptable
enough to be suitably redesigned depending upon the choice of any two moments.
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Figure 5. Exact and numerical values of the normalized moments
with size dependent selection function.

Scheme−1a Scheme−2a

t µ0,0,0(t) µ1,0,0(t) + µ0,1,0(t) + µ0,0,1(t) µ0,0,0(t) µ1,0,0(t) + µ0,1,0(t) + µ0,0,1(t)

1 0.55768 1.0322E-16 1.4147E-16 1.0322E-16
2 0.66334 1.0322E-16 1.6827E-16 1.0322E-16
3 0.69948 1.0322E-15 1.1974E-16 1.0322E-16
4 0.72767 1.0322E-16 1.9689E-16 1.0322E-16
5 0.74506 1.0322E-16 4.7747E-16 1.0322E-16

Table 15. Relative error for the weighted moments at different
times for the test case 9.
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Figure 6. Exact and numerical values of the normalized moments
with the kernels having three particle properties.

Scheme−1b Scheme−2b

t µ0,0,0(t) µ1,1,1(t) µ0,0,0(t) µ1,1,1(t)

1 0.75665 1.1102E-16 4.2454E-16 2.2204E-16
2 0.80306 1.1102E-16 3.3864E-16 2.2204E-16
3 0.81597 1.1102E-16 1.6708E-16 2.2204E-16
4 0.82467 2.2204E-16 9.9267E-16 2.2204E-16
5 0.82915 1.1102E-16 3.9475E-16 4.4409E-16

Table 16. Relative error for the weighted moments at different
times for the test case 10.
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Test case 9 Test case 10

Scheme−1a Scheme−2a Scheme−1b Scheme−2b

58 86 13 26

Table 17. Computational time taken in seconds by the schemes.

5. Conclusions. In this article, we have introduced two sets of finite volume
schemes approximating the multidimensional fragmentation problems. The schemes
are designed to estimate physically important moment functions of the particle
property distribution with high accuracy. It is observed that the efficiency of the
schemes with two weight functions in predicting the zeroth moment is considerably
higher compared to the single weighted scheme. Therefore as a natural selection,
Scheme−2a (19) and Scheme−2b (24) are our preferred models to approximate the
solutions of multidimensional fragmentation PBEs. However, both the schemes
have simple mathematical formulations and are robust to compute on nonuniform
meshes. Moreover, the above schemes consumes a very low CPU usage time to
solve multidimensional fragmentation problems. Thus one can easily compute the
proposed models in a standard PC and solve fragmentation problems in any dimen-
sion/s. The efficiency of the schemes are validated over several test problems.
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