
J. Appl. Math. Comput. (2015) 48:265–292
DOI 10.1007/s12190-014-0802-5

ORIGINAL RESEARCH

Adomian decomposition method for solving
fragmentation and aggregation population balance
equations

Randhir Singh · Jitraj Saha · Jitendra Kumar

Received: 8 February 2014 / Published online: 10 July 2014
© Korean Society for Computational and Applied Mathematics 2014

Abstract In this paper, Adomian decomposition method (ADM) is used to obtain
the exact and numerical solutions of fragmentation (breakage) and aggregation (coa-
lescence) population balance equations. The major advantage of the ADM over the
traditional numerical discretizationmethods is that it allows to solve both nonlinear ini-
tial and boundary value problems without un-physical restrictive assumptions such as
linearization, discretization, perturbation and guessing the initial term or a set of basis
functions. It approximates the solution in the form of series with easily computable
solution components. Convergence of the series solution is discussed. Convergence
analysis is reliable enough to estimate the maximum absolute truncated error of the
series solution. Some examples are included to show the accuracy, applicability, and
generality of the method.

Keywords Fragmentation equations · Aggregation equations ·
Adomian decomposition method · Population balance equations · Semi-analytical ·
Approximations

1 Introduction

Hulburt [1] and Randolph [2] were the first to propose the framework of population
balances in chemical engineering literature to model particulate processes [3]. The
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process by which two or more particles undergo changes in its physical properties
like mass or volume is called the particulate process. Before we proceed to define our
problem, we first give an impression on the significant applications of the particulate
processes in real life. Particulate processes are well known in various branches of engi-
neering including crystallization, precipitation, polymerization and various particles
related engineering problems. Its applications can be found in many areas including
chemistry (reacting polymers), physics (aggregation of colloidal particles, growth of
gas bubbles in solids), astrophysics (formation of stars and planets) and meteorology
(merging of drops in atmospheric clouds).

The aim of this paper is to use the Adomian decomposition method (ADM) to solve
the binary fragmentation (breakage) population balance Eq. [4,5] of the following type

∂u(t, x)

∂t
=

∞∫

x

b(x, y)u(t, y)s(y)dy − s(x)u(t, x),

u(t, x) ∈ J = {[0, T ] × [0,∞)}, (1.1)

with the initial condition

u(0, x) = u0(x) ≥ 0. (1.2)

Here b(x, y) is the breakage function for the formation of particles of size x from
particle of size y at time t . Selection function s(y) describes the rate at which particles
are selected to break. In a breakage process, particles break into twoormany fragments.
Breakage has a significant effect on the number of particles. The total number of
particles in a breakage process increases while the total mass remains constant.

In addition, we also consider the binary aggregation (coalescence) population bal-
ance equation of the form [6–12]

∂u(t, x)

∂t
= 1

2

x∫

0

a(x − y, y)u(t, x − y)u(t, y)dy −
∞∫

0

a(x, y)u(t, x)u(t, y)dy,

(1.3)

with the initial condition

u(0, x) = u0(x) ≥ 0. (1.4)

Here u(t, x) ∈ J and u(t, x) represents the concentration of particles of size x at
time t . Here, a(x, y) is the aggregation kernel, which describes the rate at which the
particles of sizes x and y coagulate to form a particle of size x + y. It is non-negative
and symmetric. The first term on the right hand side of (1.3) gives the rate of change of
particles of size x due to aggregation of particles of size x − y and y. The second term
represents the depletion of particles of size x by particles coagulating with particles
of other size.
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Adomian decomposition method for solving fragmentation 267

The fragmentation population balance equations (1.1) has attracted a lot of attention
ofmany authors [4,5,13–19] andmany of the references therein. Since (1.1) is a partial
integro-differential equation and its numerical solution requires special techniques.
This may be the main reason for the development of several methods for its solution,
obtained from various scientific disciplines. In [4,16–18] authors found the exact
solution of (1.1) for very simple forms of the breakage kernels and selection functions.

Many different techniques have been used in [7–10,20,21] to solve the aggregation
population balance equation (1.3). In [7] authors used the numerical scheme based
on a conservative formulation and a finite volume approach to solve (1.3). Ranjbar et
al. [9] used the Taylor polynomials and radial basis functions together to solve (1.3)
with constant kernel. The Laplace-variational iteration method was carried out in [8]
to obtain approximate series solution of (1.3). Recently, the homotopy perturbation
method [10,20] and homotopy analysis method [21] were also applied to solve (1.3).

In this paper we will use the ADM for solving the fragmentation and aggregation
population balance equations. Recently, the ADM has been used to solve the various
scientific models by researchers [22–36]. Adomian [36] asserted that the ADM pro-
vides an efficient and computationally suitable method for generating approximate
series solution for differential, integral and partial integro-differential equations. Fur-
thermore, the ADM allows solution of both linear and nonlinear functional equations
and provides an accurate analytic approximation of the problems. It is well known that
the ADM can be applied directly in a straightforward manner without using restrictive
assumptions or linearization and discretization of variable. Unlike other numerical or
discrete methods, the ADM does not result in any large system of linear or nonlin-
ear equations as it does not require any linearization or perturbation. Thus, it is not
much affected by computational round-off errors and there is no requirement of large
computer memory and time, compared with the other methods.

The organizations of this paper is as follows. In Sect. 2, the ADM is used to solve
(1.1) with initial condition (1.2). In Sect. 2, we also discuss the convergence and max-
imum truncation error of the series solution obtained by the ADM of the problem.
Section 3 deals with the ADM to solve (1.3)–(1.4) and the convergence and the maxi-
mum truncation error of series solution. In Sect. 4, the reliability and efficiency of the
proposed methods are demonstrated by several numerical examples.

2 The ADM for fragmentation equations

In this section, we use the ADM for solving (1.1) analytically. According to the ADM,
we first rewrite (1.1) in an operator form as follows:

Lu(t, x) =
∞∫

x

b(x, y)u(t, y)s(y)dy − s(x)u(t, x). (2.1)

Here, L = ∂
∂t is linear partial differential operator. It is assumed that the solution of

the problem (1.1) exits and unique. The operator L−1 regarded as the inverse operator
of L, is defined as
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L−1[·] :=
t∫

0

[·]dt. (2.2)

Operating withL−1[·] on both sides of (2.1) and using the condition u(0, x) = u0(x),
we obtain

u(t, x) = u0(x) + L−1
[ ∞∫

x

b(x, y)u(t, y)s(y)dy − s(x)u(t, x)

]
. (2.3)

The idea of the ADM relies on decomposing the solution u(t, x) into an infinite series
as

u(t, x) =
∞∑
j=0

u j (t, x)andu(t, y) =
∞∑
j=0

u j (t, y). (2.4)

Substituting (2.4) into (2.3), we have

∞∑
j=0

u j (t, x) = u0(x) + L−1 ×
[ ∞∫

x

b(x, y)s(y)

( ∞∑
j=0

u j (t, y)

)
dy

− s(x)

( ∞∑
j=0

u j (t, x)

)]
. (2.5)

Comparing both sides of (2.5), we have the recursive scheme as

u0(t, x) = u0(x),

u j (t, x) = L−1

⎡
⎣

∞∫

x

b(x, y)u j−1(t, y)s(y)dy − s(x)u j−1(t, x)

⎤
⎦ , j = 1, 2 . . . ,

⎫⎪⎪⎬
⎪⎪⎭
(2.6)

which leads a complete determination of the solution components u j (t, x). Hence, the
n-term truncated series solution can be obtained as

ψn(t, x) =
n∑
j=0

u j (t, x). (2.7)

2.1 Convergence analysis

In this section we follow the approach discussed in [23] for convergence analysis
and error estimation of the proposed recursive scheme (2.6). Convergence analysis
is reliable enough to estimate the maximum absolute truncated error of the series
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solution. For that reason, letX = ([0, T ] × L1[0,∞), ‖.‖), where be a Banach space
(see, [38]) with the norm defined as

‖u‖ = sup
t∈[0,t0]

∞∫

0

exp (λx) |u(t, x)| dx,with λ > 0. (2.8)

We now rewrite (2.3) in an operator form as follows

u = T u, (2.9)

where T : X → X is a linear operator given by

T u = u0(x) + L−1
[ ∞∫

x

b(x, y)u(t, y)s(y)dy − s(x)u(t, x)

]
. (2.10)

To show the operator T to be contractive, we rewrite the relation (2.10) in the following
equivalent form

∂

∂t

[
u(t, x) exp[A(t, x)]] = exp[A(t, x)]

⎡
⎣

∞∫

x

s(y)b(x, y)u(t, y) dy

⎤
⎦ ,

where exp[A(t, x)] = ts(x). Thus we have

T̃ u = u0(x) exp[−A(t, x)]

+
t∫

0

exp[A(x, s) − A(t, x)]
∞∫

x

s(y)b(x, y)u(y, s) dy ds. (2.11)

Since T and T̃ are equivalent, so it is enough to show T̃ is contractive.

Theorem 2.1 Let the linear operator T̃ defined by (2.11) be contractive, that is,
‖T̃ u − T̃ u∗‖ ≤ δ‖u − u∗‖, for all u, u∗ ∈ X with

1. b(x, y) = c xr−1

yr where r = 1, 2, ... and c > 0 is a constant satisfying∫ y
0 xb(x, y) dx = y,

2. s(x) ≤ xk , where k = 1, 2, ...,
3. λ is so chosen that

[
exp (λy) − 1

]
< 1 and,

4. δ := (k!)t0
λk+1 c < 1 for some suitable t0.

Proof For any u and u∗, consider

‖T̃ u − T̃ u∗‖ ≤
t∫

0

[ ∞∫

0

exp

⎡
⎣λx − (t − s)s(x)

] ∞∫

x

s(y)b(x, y)
∣∣u − u∗∣∣ (y, s) dy dx

⎤
⎦ ds
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≤
t∫

0

[ ∞∫

0

exp (λx)

∞∫

x

s(y)b(x, y)
∣∣u − u∗∣∣ (y, s) dy dx

]
ds [∵ s ≤ t]

≤ c

t∫

0

[ ∞∫

0

⎛
⎝

y∫

0

exp (λx)
xr−1

yr
dx

⎞
⎠ s(y)

∣∣u − u∗∣∣ (y, s) dy
]
ds

≤ c

t∫

0

[ ∞∫

0

1

λy

[
exp (λy) − 1

]
s(y)

∣∣u − u∗∣∣ (y, s) dy
]
ds [∵ x ≤ y]

≤ 1

λ
c

t∫

0

[ ∞∫

0

yk
∣∣u − u∗∣∣ (y, s) dy

]
ds

≤ k!
λk+1 c

t∫

0

[ ∞∫

0

exp (λy)
∣∣u − u∗∣∣ (y, s) dy

]
ds

≤ k!
λk+1 c

t∫

0

∥∥u − u∗∥∥ ds ≤ (k!)t0
λk+1 c

∥∥u − u∗∥∥ = δ
∥∥u − u∗∥∥ .

If δ = (k!)t0
λk+1 c < 1 then T̃ is a contractive mapping. 	


Theorem 2.2 Assume that all the conditions of Theorem 3.1 hold. Let u0, u1, u2, . . . ,
be the components of the solution u given by the recursive scheme (2.6), and let
ψn =∑n

j=0 y j be the n-terms series solution defined by (2.7). Then the series solution

ψn converges whenever δ = (k!)t0
λk+1 c < 1 and ‖u1‖ < ∞.

Proof From (2.6) and (2.7), we have

ψn =
n∑
j=0

u j (t, x) = u0(x) +
n∑
j=1

L−1
[ ∞∫

x

b(x, y)s(y)u j−1(t, y)dy − s(x)u j−1(t, x)

]
.

= u0(x) + L−1
[ ∞∫

x

b(x, y)s(y)

( n−1∑
j=0

u j (t, y)

)
dy − s(x)

( n−1∑
j=0

u j (t, x)

)]
.

= u0(x) + L−1
[ ∞∫

x

b(x, y)s(y)ψn−1(t, y)dy − s(x)ψn−1(t, x)

]
,

which is equivalent to the following operator equation form as

ψn = T ψn−1. (2.12)

By following the steps of Theorem 2.12, we obtain

‖ψm+1 − ψm‖ ≤ δ‖ψm − ψm−1‖.
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Adomian decomposition method for solving fragmentation 271

Thus we have

‖ψm+1 − ψm‖ ≤ δ‖ψm − ψm−1‖ ≤ δ2‖ψm−1 − ψm−2‖ ≤ . . . ≤ δm‖ψ1 − ψ0‖.

Using the triangle inequality with n > m we have

‖ψn − ψm‖ ≤ ‖ψn − ψn−1‖ + ‖ψn−1 − ψn−2‖ + · · · + ‖ψm+1 − ψm‖,
≤ [δn−1 + δn−2 + · · · + δm]‖ψ1 − ψ0‖,
= δm[1 + δ + δ2 + · · · + δn−m−1]‖ψ1 − ψ0‖ = δm

(
1 − δn−m

1 − δ

)
‖u1‖.

Since 0 < δ < 1 so, (1 − δn−m) < 1, and ‖u1‖ < ∞. It follows that

‖ψn − ψm‖ ≤ δm

1 − δ
‖u1‖, (2.13)

which converges to zero as m → ∞. This implies that there exits a ψ such that
limn→∞ ψn = ψ . Since, we have u = ∑∞

j=0 u j = limn→∞ ψn = ψ which is the
exact solution of (2.9). 	

Theorem 2.3 Let u be the exact solution of (2.9) and ψm be the series solution given
by (2.7). Then there holds

‖u − ψm‖ ≤ δm

(1 − δ)
‖u1‖, (2.14)

‖u1‖ = sup
t∈[0,t0]

∞∫

0

exp (λx) |u1(t, x)| dx.

Proof From the estimate (2.13), for n ≥ m, n, m ∈ N, we get

‖ψn − ψm‖ ≤ δm

1 − δ
‖u1‖.

Fixing m and letting n → ∞, and using lim
n→∞ ψn = u, we obtain the desired result of

theorem. 	


3 The ADM for aggregation equations

In this section, the ADM is used to solve (1.3)–(1.4) approximately. According to the
ADM, we rewrite (1.3) in an operator form as follows

Lu(t, x) = 1

2

x∫

0

a(x − y, y) f1(u)dy −
∞∫

0

a(x, y) f2(u)dy. (3.1)

Here, L = ∂
∂t is a linear partial differential operator. The nonlinear functions are

denoted by f1(u) = u(t, x − y)u(t, y) and f2(u) = u(t, x)u(t, y).
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Operating with L−1[·] defined by (2.2) on both sides of (3.1) and using u(0, x) =
u0(x) yields

u(t, x) = u0(x) + L−1
[
1

2

x∫

0

a(x − y, y) f1(u)dy −
∞∫

0

a(x, y) f2(u)dy

]
. (3.2)

The ADM introduces the solution u(t, x) and the nonlinear functions f1(u) and f2(u)

by infinite series

u(t, x) =
∞∑
j=0

u j (t, x) (3.3)

and

f1(u) =
∞∑
j=0

A j , f2(u) =
∞∑
j=0

Bj , (3.4)

where A j and Bj are the so-called Adomian polynomials and defined by

An = 1

n!
dn

dλn

[
f1

( ∞∑
k=0

ukλ
k
)]

λ=0
, Bn = 1

n!
dn

dλn

[
f2

( ∞∑
k=0

ukλ
k
)]

λ=0
,

as given in [35]. Recently, [28–32,37] authors developed several new efficient algo-
rithms for rapid computer-generation of the Adomian polynomials.

Substituting (3.3) and (3.4) into (3.2) yields
∞∑
j=0

u j (t, x) = u0(x) + L−1

×
[
1

2

x∫

0

a(x − y, y)

( ∞∑
j=0

A j

)
dy −

∞∫

0

a(x, y)

( ∞∑
j=0

Bj

)
dy

]
. (3.5)

Comparing both sides of (3.5), we have

u0(t, x) = u0(x),

u j (t, x) = L−1
[
1

2

x∫

0

a(x − y, y)A j−1dy −
∞∫

0

a(x, y)Bj−1dy

]
, j = 1, 2, . . . ,

⎫⎪⎪⎬
⎪⎪⎭
(3.6)

which gives the complete determination of the solution components u j (t, x). Hence,
the n-terms truncated series solution can be obtained as

ψn(t, x) =
n∑
j=0

u j (t, x). (3.7)
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Note 3.1 Note that both the recursive schemes (2.6) and (3.6) can be used to get
approximate/exact solutions of the fragmentation and aggregation population balance
equations provided the integrals appear in (2.6) and (3.6) to be evaluated exactly.

3.1 Convergence analysis

We now discuss the convergence of the recursive scheme (3.6). LetX = (C ([0, T ] :
L1[0,∞)

)
, ‖.‖) be a Banach space (see, [38]) with the norm defined as

‖u‖ = sup
s∈[0,t0]

∞∫

0

|u(s, x)| dx < ∞. (3.8)

We write (3.2) in an operator equation form as

u = Nu, (3.9)

where N : X → X is a nonlinear operator given by

Nu = u0(x) + L−1
[
1

2

x∫

0

a(x − y, y) f1(u)dy −
∞∫

0

a(x, y) f2(u)dy

]
. (3.10)

To show N is contractive, we write the Eq. (3.10) in the following equivalent form

∂

∂t

[
u(t, x) exp[A(x, t, u)]] = 1

2
exp[A(x, t, u)]

x∫

0

a(x − y, y)u(t, x − y)u(t, y) dy,

(3.11)

where A(x, t, u) = ∫ t0
∫∞
0 a(x, y)u(s, y) dy ds. Thus we have

Ñu =u0(x) exp[−A(x, t, u)]

+ 1

2

t∫

0

exp[A(x, s, u) − A(x, t, u)]
x∫

0

a(x − y, y)u(s, x − y)u(s, y) dy ds.

(3.12)

Since N and Ñ are equivalent, so it is enough to show Ñ is contractive.

Theorem 3.1 Let the non-linear operator Ñ defined by (3.12) be contractive, that is,
‖Ñu − Ñu∗‖ ≤ δ‖u − u∗‖, for all u, u∗ ∈ X with

1. a(x, y) = 1 for all x, y ∈ (0,∞),
2. δ := t0 exp(2t0L)[‖u0‖ + 2t0L2 + 2t0L] < 1, where L = ‖u0‖(T + 1).
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Proof Let u, u∗ ∈ X, consider

Ñu − Ñu∗ = u0(x)H(x, 0, t) + 1

2

t∫

0

H(x, s, t)

x∫

0

u(s, x − y)u(s, y) dy ds

−1

2

t∫

0

exp[A(x, s, u∗) − A(x, t, u∗)]

·
⎡
⎣

x∫

0

u∗(x − y, s)
{
u(y, s) − u∗(y, s)

}
dy

+
x∫

0

u(y, s)
{
u(x − y, s) − u∗(x − y, s)

}
dy

⎤
⎦ ds, (3.13)

where H(x, s, t) = exp[A(x, s, u) − A(x, t, u)] − exp[A(x, s, u∗) − A(x, t, u∗)]. It
can be shown that,

|H(x, s, t)| ≤ exp

⎧⎨
⎩−

t∫

s

∞∫

0

u∗(τ, y) dy dτ

⎫⎬
⎭ (t − s)

∥∥u − u∗∥∥

≤ (t − s) exp {(t − s)B} ∥∥u − u∗∥∥ ≤ L1
∥∥u − u∗∥∥ , (3.14)

where L1 = t exp {t B} and B = max {‖u‖, ‖u∗‖}. In order to show that the operator
Ñ is a contractive, let us define the set D = {u ∈ X : ‖u‖ ≤ 2L}. It can be shown
that the operator Ñ maps D into itself. For u, u∗ ∈ D we have B ≤ 2L . Taking norm
on both sides of (3.13), we get

‖Ñu − Ñu∗‖ ≤L1 ‖u0‖
∥∥u − u∗∥∥+ L1

∥∥u − u∗∥∥
t∫

0

[
1

2
‖u‖2

]
ds

+
t∫

0

L1

[
1

2

(‖u‖ + ‖u∗‖) ∥∥u − u∗∥∥
]
ds

≤L1

[
‖u0‖ + 1

2
t‖u‖2 + 1

2
t
(‖u‖ + ‖u∗‖)

] ∥∥u − u∗∥∥
≤δ
∥∥u − u∗∥∥ , (3.15)

if δ = t0 exp(2t0L)
[‖u0‖ + 2t0L2 + 2t0L

]
< 1 under suitably chosen t0 the operator

Ñ is a contraction map. 	

Theorem 3.2 Assume that all the conditions of Theorem 3.1 hold. Let u0, u1, u2, . . . ,
be the components of the solution u given by the recursive scheme (3.6), and let ψn =∑n

j=0 y j be the n-terms series solution defined by (3.7). Then the series solution ψn

converges whenever δ = t0 exp(2t0L)
[‖u0‖ + 2t0L2 + 2t0L

]
< 1 and ‖u1‖ < ∞.
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Proof Using (3.6) and (3.7), we have

ψn =
n∑
j=0

u j (t, x) = u0(x) +
n∑
j=1

L−1

⎡
⎣1

2

x∫

0

a(x − y, y)A j−1dy −
∞∫

0

a(x, y)Bj−1dy

⎤
⎦ ,

= u0(x) + L−1

⎡
⎣1

2

x∫

0

a(x − y, y)

( n−1∑
j=0

A j

)
dy −

∞∫

0

a(x, y)

( n−1∑
j=0

Bj

)
dy

⎤
⎦ . (3.16)

As we know
∑n

j=0 A j ≤ f1(ψn) and
∑n

j=0 Bj ≤ f2(ψn) as given in ([32] pp. 945)
and using it in (3.16), we get

ψn ≤ u0(x) + L−1

⎡
⎣1

2

x∫

0

a(x − y, y) f1(ψn−1)dy −
∞∫

0

a(x, y) f2(ψn−1)dy

⎤
⎦

(3.17)

which is equivalent to the following operator form

ψn ≤ Nψn−1. (3.18)

By following the steps of Theorem 3.1, we obtain

‖ψn+1 − ψn‖ ≤ δ‖ψn − ψn−1‖.

Thus, we have

‖ψn+1 − ψn‖ ≤ δ‖ψm − ψn−1‖ ≤ δ2‖ψn−1 − ψn−2‖ ≤ . . . ≤ δn‖ψ1 − ψ0‖.

Using the triangle inequality for all n,m ∈ N with n > m, we have

‖ψn − ψm‖ ≤ ‖ψn − ψn−1‖ + ‖ψn−1 − ψn−2‖ + · · · + ‖ψm+1 − ψm‖,
≤ (δn−1 + δn−2 + · · · + δm)‖ψ1 − ψ0‖ = δm

(
1 − δn−m

1 − δ

)
‖u1‖.

As δ < 1 so, (1 − δn−m) < 1, and ‖u1‖ < ∞, it follows that

‖ψn − ψm‖ ≤ δm

1 − δ
‖u1‖, (3.19)

which converges to zero as m → ∞. This implies that there exits a ψ such that
limn→∞ ψn = ψ . Since, we have u = ∑∞

j=0 u j = limn→∞ ψn = ψ , which is the
exact solution of (3.9). 	

Theorem 3.3 Let u be the exact solution of (3.9) andψm be the series solution defined
by (3.7). Then there holds

‖u − ψm‖ ≤ δm

(1 − δ)
‖u1‖, (3.20)
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where ‖u1‖ = supt∈[0,t0]
∫ ∞

0
|u1(t, x)| dx.

Proof The proof is similar to that of Theorem 2.3, hence it is omitted here. 	


4 Numerical results and discussion

In this section, we will demonstrate the efficiency and accuracy of the ADM with
several test problems. All symbolic and numerical calculations are done using the
‘MATHEMATICA SOFTWARE’ Package.

4.1 Example of fragmentation equation

Example 4.1 Consider (1.1)–(1.2) with breakage kernel b(x, y) = 2
y , selection

function s(x) = x and the initial condition u0(x) = e−x , its exact solution is
u(t, x) = (1 + t)2e−x(1+t) as in [17,39].

According to the ADM (2.6), we have the recursive scheme as follows:

u0(t, x) = e−x ,

u j (t, x) = L−1

⎡
⎣

∞∫

x

2

y
u j−1(t, y)ydy − xu j−1(t, x)

⎤
⎦ , j = 1, 2, . . .

⎫⎪⎪⎬
⎪⎪⎭

. (4.1)

Using the recursive scheme (4.1), we obtain the components u j (t, x) as follows:

u0(t, x) = e−x ,

u1(t, x) = (−t)1x−1

1! (0 − 2x + x2)e−x ,

u2(t, x) = (−t)2x0

2! (2 − 4x + x2
)
e−x ,

...

u j (t, x) = (−t) j x j−2

j ! ( j ( j − 1) − 2 j x + x2
)
e−x .

Hence, the n-terms truncated series solution is obtained asψn(t, x) =∑n
j=0 u j (t, x),

ψn(t, x) =
n∑
j=0

(−t) j x j−2

j !
(
j ( j − 1) − 2 j x + x2

)
e−x . (4.2)

Then by taking the limit of (4.2), we obtain

lim
n→∞ ψn(t, x) =

∞∑
j=0

(−t) j x j−2

j !
(
j ( j − 1) − 2 j x + x2

)
e−x = (1 + t)2e−x(1+t),
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Table 1 Truncation error of example 4.1

m 5 10 15 20 25 30

�m 0.066339 0.0391725 0.023131 0.0136586 0.00806527 0.00476246

which is the exact solution of Example 4.1.
Table 1 we give the truncation error using the formula given in Theorem 2.3 as

�m := δm

(1 − δ)
‖u1‖, ‖u1‖ = sup

t∈[0,t0]

∞∫

0

teλx−x (2 − x)dx = t0(1 − 2λ)

(λ − 1)2

Here δ = k!t0
λk+1 c; k = 1, c = 2 are given; and choosing λ = 0.1; t0 = 0.0045.

Example 4.2 Consider (1.1)–(1.2) with b(x, y) = 2
y , s(x) = x2, u0(x) = e−x , its

exact solution is u(t, x) = (1 + 2t + 2t x)e−x(1+xt) as in [17,39].

According to the ADM (2.6), we have the following recursive scheme as:

u0(t, x) = e−x ,

u j (t, x) = L−1

⎡
⎣

∞∫

x

2

y
u j−1(t, y)y

2dy − x2u j−1(t, x)

⎤
⎦ , j = 1, 2, . . . ,

⎫⎪⎪⎬
⎪⎪⎭

. (4.3)

Using the recurrence relation (4.3), we obtain the components as follow:

u0(t, x) =e−x

u1(t, x) = (−t)1x0

1!
(
−2 − 2x + x2

)
e−x

u2(t, x) = (−t)2x2

2!
(
−4 − 4x + x2

)
e−x

...

u j (t, x) = (−t) j x2 j−2

j !
(
−2 j − 2 j x + x2

)
e−x .

Hence, the n-term truncated series solution can be obtained as

ψn(t, x) =
n∑
j=0

(−t) j x2 j−2

j !
(− 2 j − 2 j x + x2

)
e−x . (4.4)

Taking limit of (4.4), we get

lim
n→∞ ψn(t, x) =

∞∑
j=0

(−t) j x2 j−2

j !
(− 2 j − 2 j x + x2

)
e−x = (1 + 2t + 2t x)e−x(1+xt),
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which is the exact solution of Example 4.2.

Example 4.3 Consider (1.1)–(1.2) with b(x, y) = 2
y , s(x) = x , and u0(x) = δ(x−a),

its exact solution is u(t, x) = e−t x
[
δ(x − a) + (2t + t2(a − x))θ(a − x)

]
as as in

[17,39].

According to the ADM (2.6), we have

u0(t, x) = δ(x − a),

u j (t, x) = L−1

⎡
⎣

∞∫

x

2

y
u j−1(t, y)ydy − xu j−1(t, x)

⎤
⎦ , j = 1, 2, . . . ,

⎫⎪⎪⎬
⎪⎪⎭

(4.5)

Using the relation (4.5), the solution components u j (t, x) are calculated as

u0(t, x) = δ(x − a),

u1(t, x) = (−xt)1

1! δ(x − a) + 2tθ(a − x),

u2(t, x) = (−xt)2

2! δ(x − a) + (−xt)1

1! 2tθ(a − x) + t2(a − x)θ(a − x),

u3(t, x) = (−xt)3

3! δ(x − a) + (−xt)2

2! 2tθ(a − x) + (−xt)1

1! t2(a − x)θ(a − x),

...

u j (t, x) =
[

(−t x) j

j ! δ(x − a) + (−t x) j−1

( j − 1)! 2tθ(a − x) + (−t x) j−2

( j − 2)! t
2(a − x)θ(a − x)

]
.

Here δ(x − a) is Dirac’s delta function and θ(a− x) is unite step function. Hence, the
n-terms truncated series solution is obtained as

ψn(t, x) = δ(x − a)

n∑
j=0

(−t x) j

j ! + 2tθ(a − x)
n−1∑
j=0

(−t x) j

j ! + t2(a − x)θ(a − x)

×
n−2∑
j=0

(−t x) j

j ! .

By taking limit, we obtain

lim
n→∞ ψn(t, x) = δ(x − a)

∞∑
j=0

(−t x) j

j ! + 2tθ(a − x)
∞∑
j=0

(−t x) j

j ! + t2(a − x)θ(a − x)

×
∞∑
j=0

(−t x) j

j ! = e−t x [δ(x − a) + (2t + t2(a − x)
)
θ(a − x)

]
,

which is the exact solution of Example 4.3.

123



Adomian decomposition method for solving fragmentation 279

Example 4.4 Consider (1.1)–(1.2) with b(x, y) = 2
y , s(x) = x2, and u0(x) = δ(x −

a). Its exact solution is u(t, x) = e−t x2
[
δ(x − a) + 2taθ(a − x)

]
as in [17,39].

According to the ADM (2.6), we have the following recursive scheme

u0(t, x) = δ(x − a),

u j (t, x) = L−1

⎡
⎣

∞∫

x

2

y
u j−1(t, y)y

2dy − x2u j−1(t, x)

⎤
⎦ , j = 1, 2, . . . ,

⎫⎪⎪⎬
⎪⎪⎭

. (4.6)

Using the recursive scheme (4.6), the solution components are obtained as follow

u0(t, x) = δ(x − a),

u1(t, x) = (−t x2)1

1! δ(x − a) + 2atθ(a − x),

u2(t, x) = (−t x2)2

2! δ(x − a) + (−t x2)1

1! 2atθ(a − x),

u3(t, x) = (−t x2)3

3! δ(x − a) + (−t x2)2

2! 2atθ(a − x),

...

u j (t, x) =
[
(−t x2) j

j ! δ(x − a) + (−t x2) j−1

( j − 1)! 2atθ(a − x)

]
.

Hence, the n-terms truncated approximate series solution is obtained as follows:

ψn(t, x) = δ(x − a)

n∑
j=0

(−t x2) j

j ! + 2taθ(a − x)
n−1∑
j=0

(−t x2) j

j ! .

Hence, taking the limit, we get

lim
n→∞ ψn(t, x) = δ(x − a)

∞∑
j=0

(−t x2) j

j ! + 2taθ(a − x)
∞∑
j=0

(−t x2) j

j ! .

= e−t x2 [δ(x − a) + 2atθ(a − x)] ,

which is the exact solution.

Example 4.5 Consider (1.1)–(1.2) with general selection function s(x) = xk , Austin
Kernel [40] as

b(x, y) =
(

φγ xγ−1

yγ + (1−φ)λxλ−1

yλ

)
(

φγ
λ+1 y + (1−φ)λ

λ+1

) .

and u0(x) = e−x . Note that the exact solution of this problem is not available in
literature.
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According to the ADM (2.6), we have the following recursive scheme

u0(t, x) = e−x ,

u j (t, x) = L−1

⎡
⎣

∞∫

x

b(x, y)u j−1(t, y)s(y)dy − s(x)u j−1(t, x)

⎤
⎦ , j = 1, 2 . . . .

⎫⎪⎪⎬
⎪⎪⎭

.

(4.7)

To obtain the exact solution of this problem, we take some specific values of the
parameters k, λ, φ and γ .

Case (i) For k = 3,λ = 2,φ = 0 and γ = 2:Wehave s(x) = x3 and b(x, y) = 3x
y2
.

Using the recursive scheme (4.7), we obtain the solution components as follows:

u0(t, x) = e−x ,

u1(t, x) = (−t)1x1

1!
(
−3 − 3x + x2

)
e−x ,

u2(t, x) = (−t)2x4

2!
(
−6 − 6x + x2

)
e−x ,

...

u j (t, x) = (−t) j x3 j−2

j ! (−3 j − 3 j x + x2)e−x .

Hence, the n-term approximate series solution is obtained as

ψn(t, x) =
n∑
j=0

[
(−t) j x3 j−2

j ! (−3 j − 3 j x + x2)

]
e−x .

Taking limit of above equation we get

lim
n→∞ ψn(t, x) =

∞∑
j=0

[
(−t) j x3 j−2

j ! (−3 j − 3 j x + x2)

]
e−x = e−x−t x3 (1 + 3t x + 3t x2

)
.

By Theorem 2.12 , if ψn(t, x) converges, then it will converge to the exact solution.
Therefore, the limiting value of ψn(t, x) which must be the exact solution.

Case (ii) For k = 4, λ = 3, φ = 0 and γ = 3: We have s(x) = x4 and
b(x, y) = 4x2

y3
. Using (4.7), we obtain the solution components as follows:

u0(t, x) = e−x ,

u1(t, x) = (−t)1x2

1!
(− 4 − 4x + x2

)
e−x ,

u2(t, x) = (−t)2x6

2!
(− 8 − 8x + x2

)
e−x ,

...

u j (t, x) = (−t) j x4 j−2

j ! (−4 j − 4 j x + x2)e−x .
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The n-term truncated series solution is obtained as

ψn(t, x) =
n∑
j=0

[
(−t) j x4 j−2

j ! (−4 j − 4 j x + x2)

]
e−x .

Then we take limit

lim
n→∞ ψn(t, x)=

∞∑
j=0

[
(−t) j x4 j−2

j ! (−4 j − 4 j x + x2)

]
e−x = e−x−t x4 (1 + 4t x2 + 4t x3

)
.

Since the exact solution is not known for this problem therefore byTheorem2.12, if the
sequence ψn(t, x) converges, then it will converge to exact solution. But the limiting
value of ψn(t, x) gives e−x−t x4

(
1 + 4t x2 + 4t x3

)
so this must be exact solution of

the problem.
Case (iii) In general λ = k − 1, φ = 0 and γ = k − 1: We have s(x) = xk and

b(x, y) = kxk−2

yk−1 . Using (4.6), we obtain the components as

u0(t, x) = e−x ,

u1(t, x) =
[
(−t)1x1k−2

1! (−1k − 1kx + x2)

]
e−x ,

u2(t, x) =
[
(−t)2x2k−2

2! (−2k − 2kx + x2)

]
e−x ,

...

u j (t, x) =
[
(−t) j x jk−2

j ! (− jk − jkx + x2)

]
e−x .

The n-term approximate series solution can be obtained as

ψn(t, x) =
n∑
j=0

[
(−t) j x jk−2

j ! (− jk − jkx + x2)

]
e−x .

The limiting value of above sequence is given as

lim
n→∞ ψn(t, x) =

∞∑
j=0

[
(−t) j x jk−2

j ! (−k j − k j x + x2)

]
e−x .

= e−x−t xk (1 + ktxk−2 + ktxk−1).

Therefore, the limiting value of ψn(t, x) gives e−x−t xk (1 + ktxk−2 + ktxk−1) which
must be the exact solution.

Remark 4.1 Note that in Case (iii), we are able to obtain the exact solution for any
k ≥ 2, k ∈ N.
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Case (iv) For k = 1,λ = 2,φ = 0 and γ = 2:Wehave s(x) = x andb(x, y) = 3x
y2

.

Using (4.6), we have the solution components as

u0(t, x) = e−x ,

u1(t, x) = −12t x−1

1!
[
0 − 0x − x2 + 3x2ex�(0, x)

]
e−x ,

u2(t, x) = −13t2x0

2!
[
0 − 6x − x2 + 12ex x2�(0, x)

]
e−x ,

u3(t, x) = −14t3x1

3!
[
3 − 21x − x2 + 30ex x2�(0, x)

]
e−x ,

...

u j (t, x) = (−1) j+1tnx j−2

j !
[
j ( j − 1)( j − 2)

2
− j ( j − 1)( j + 4)

2
x

− x2 + j ( j + 1)( j + 2)

2
ex x2�(0, x)

]
e−x .

The truncated n-term approximate series solution is obtained as

ψn(t, x) =
n∑
j=0

(−1) j+1t j x j−2

j !
[
j ( j − 1)( j − 2)

2
− j ( j − 1)( j + 4)

2
x − x2

+ j ( j + 1)( j + 2)

2
ex x2�(0, x)

]
e−x .

By taking limit, we obtain

lim
n→∞ ψn(t, x) =

∞∑
j=0

(−1) j+1t j x j−2

j !
[
j ( j − 1)( j − 2)

2
− j ( j − 1)( j + 4)

2
x − x2

+ j ( j + 1)( j + 2)

2
ex x2�(0, x)

]
e−x .

ψ(t, x) = 1

2
e−x−t x

[
2 + 6t2x + t3x − t3x2 + 6ex t x�(0, x)

− 6ex t2x2�(0, x) + ex t3x3�(0, x)

]
.

The limiting value ofψn(t, x) gives 1
2e

−x−t x [2+6t2x+ t3x− t3x2+6ex t x�(0, x)−
6ex t2x2�(0, x) + ex t3x3�(0, x)] which must be the exact solution. Here, �(0, x) is
incomplete Gamma function and defined as �(0, x) = ∫∞

x t−1e−t dt.

Remark 4.2 Note that we have shown only those case where we have been able to get
the closed of the exact solutions. However, an approximate solution can be obtained
for any breakage kernels and selection function with any initial conditions provided
the solution of the problem exits.
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4.2 Example of aggregation equation

Example 4.6 Consider (1.3)–(1.4) with constant kernel a(x, y) = 1, u0(x) = e−x .
The exact solution is

u(t, x) = N 2(t)e−N (t)x ,

where N (t) = 2M0
2+M0t

and M0 = 1 as in [9].

According to the ADM (3.6), we have the following recursive scheme as

u0(t, x) = e−x ,

u j (t, x) = L−1

⎡
⎣1

2

x∫

0

A jdy −
∞∫

0

Bjdy

⎤
⎦ , j = 1, 2, . . . ,

⎫⎪⎪⎬
⎪⎪⎭

. (4.8)

where A j and Bj are the Adomian polynomials of the nonlinear functions f1(u) =
u(t, x − y)u(t, y) and f2(u) = u(t, x)u(t, y). Using the definitional formula (3.4),
we compute A j and Bj as follows:

An =
n∑
j=0

u j (t, x − y)un− j (t, y) and Bn =
n∑
j=0

u j (t, x)un− j (t, y). (4.9)

In view of (4.8) and (4.9), we obtain the components as

u0(t, x) = e−x ,

u1(t, x) = e−x t

211! (x − 2),

u2(t, x) = e−x t2

222!
(
x2 − 6x + 6

)
,

u3(t, x) = e−x t3

233!
(
x3 − 12x2 + 36x − 24

)
,

...

u j (t, x) = ( j + 1)!e−x t j

2 j

[
x j

0!( j + 1)! j ! − x j−1

1!( j)!( j − 1)! + x j−2

2!( j − 1)!( j − 2)!
− x j−3

3!( j − 2)!( j − 3)!
+ · · · + (−1)r

x j−r

r !( j − r + 1)!( j − r)! + · · · + (−1) j−1 x1

( j − 1)!(2)!(1)!
+ (−1) j

1

( j)!(1)!(0)!
]
.

123



284 R. Singh et al.

Table 2 Error of example 4.6 when t = 1, x ∈ [0, 10]
n 10 15 20 25 30 35 40

Error 9.56E−04 3.58E−05 1.30E−06 4.62E−08 1.57E−09 5.28E−11 1.86E−12

Fig. 1 Comparison of ψn , n = 2, 4, 6, 8 and the exact u with time t = 1 of Example 4.6

Hence, the n-term truncated series solution can be obtained as

ψn(t, x) =
n∑
j=0

u j (t, x).

In order to check the accuracy of the ADM (3.6), we define error by fixing time t and
letting x ∈ [0, 10].We divide the interval [0, 10] into 100 subintervals [xi−1/2, xi+1/2],
i = 1(1)100. Each subinterval has its representative xi as the midpoint of the interval,
i.e, xi = xi−1/2+xi+1/2

2 . The grid points may be non-equispaced or equispaced such that
xi+1/2 − xi−1/2 = hi , i = 1(1)100. We define the error as

Error =
100∑
i=1

|ψ i
n − ui |hi , n = 10, 15, 20, ..., 40. (4.10)

We denote ψ i
n = ψn(t, xi ) and ui = u(t, xi ).

Table 2 shows the error calculated by (4.10).Aswe can clearly see that as the number
of terms in series solution increases the error decreases as expected by Theorem 3.2.

Figures 1 and 2 show the plots of the exact solution u(t, x) and the approximate
series solutionψn(t, x) obtained by theADM (3.6). Note that the curves of the approx-
imate solutions ψ8 at time t = 1 and ψ14 at t = 1.5 are identical to the exact solution
u(t, x).
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Fig. 2 Comparison of ψn , n = 8, 10, 12, 14 and the exact u with time t = 1.5 of Example 4.6

Table 3 Truncation error of Example 4.6

m 5 10 15 20 25 30

�m 0.0838802 0.0220186 0.00577988 0.00151722 0.000398271 0.000104546

Table 3 shows the truncation error of Example 4.6 using Theorem 3.3 as

�m := δm

(1 − δ)
‖u1‖, ‖u1‖ = sup

t∈[0,t0]

∞∫

0

t
e−x

2
(x − 2)dx = t0/2.

Here δ:=t0e2t0L (‖u0‖ + 2t0L(L+1)) ; L=‖u0‖(T+1),‖u0‖= supt∈[0,t0]
∫ ∞

0
e−xdx

= 1, and choosing T = 1 and t0 = 0.15.

Example 4.7 Consider (1.3)–(1.4) with multiplicative kernel a(x, y) = xy, u0(x) =
e−x . Its analytic solution follows [39] as

u(t, x) = e−(t+1)x
∞∑
k=0

tk x3k

(k + 1)!�(2k + 2)
.

.

According to the recursive scheme (3.6), we have

u0(t, x) = e−x ,

u j (t, x) = L−1

⎡
⎣1

2

x∫

0

(x − y)yA jdy −
∞∫

0

xyB jdy

⎤
⎦ , j = 1, 2, . . . ,

⎫⎪⎪⎬
⎪⎪⎭

. (4.11)
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Table 4 Error of Example 4.7 when t = 1, x ∈ [0, 10]
n 10 15 20 25 30 35 40

Error 9.01E−01 1.29E−01 5.54E−02 2.41E−03 9.02E−06 5.32E−08 1.05E−10

Making use of (4.11) and (4.9), we obtain components as

u0(t, x) = e−x ,

u1(t, x) = (t x)1

2!3! (−12 + x2)e−x ,

u2(t, x) = (t x)2

3!5!
(
360 − 60x2 + x4

)
e−x ,

u3(t, x) = (t x)3

4!7!
(
−20160 + 5040x2 − 168x4 + x6

)
e−x ,

...

u j (t, x) = 2e−x (xt) j
[

x2 j

2( j + 1)!(2 j + 1)! − x2( j−1)

1!( j − 1)!(2 j)! + x2( j−2)

2!( j − 2)!(2( j − 1))!
− x2( j−3)

3!( j − 3)!(2( j − 2))! + · · · + (−1)r
x2( j−r)

r !( j − r)!(2( j − r + 1))! + · · · +

(−1) j−1 x2

( j − 1)!(1)!(4)! + (−1) j
1

j !(0)!(2)!
]
.

The n-term truncated series solution can be obtained as follows:

ψn(t, x) =
n∑
j=0

u j (t, x).

Table 4 shows the error by using (4.10) for n = 10, 15, ..., 40 with t = 1. It is clear
that as one increases the number of terms in the series solution the error decreases as
expected.

We plot the exact solution u(t, x) and the approximate series solution ψn(t, x)
obtained by the ADM (3.6) in Figs. 3 and 4. It can be noted that the curve of the
approximate solution ψ8 is almost identical to the exact solution u(t, x) with t = 0.5.
Also, the approximate solutionψ25 and u(t, x)with t = 1 are overlapping each others.

Example 4.8 Consider (1.3)–(1.4) with multiplicative kernel a(x, y) = xy, u0(x) =
e−x

x , which has exact solution as follows [9]

u(t, x) = exp(−T x)
I1(2x

√
t)

x2
√
t

,
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Fig. 3 Comparison of ψn , n = 2, 4, 6, 8 and the exact u with time t = 0.5 of Example 4.7

Fig. 4 Comparison of ψn , n = 10, 15, 20, 25 and the exact u with time t = 1 of Example 4.7

where

T =
{
1 + t, t ≤ 1,
2
√
t, otherwise.

Here I1 is is the modified Bessel function of the first kind

I1(x) = 1

π

π∫

0

exp(x cos θ) cos θdθ. (4.12)
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Table 5 Error of Example 4.8 when t = 1, x ∈ [0, 10]
n 10 15 20 25 30 35 40

Error 1.79E−02 2.20E−03 4.01E−05 2.70E−07 1.15E−09 2.00E−12 4.18E−12

In view of the ADM (3.6), we have the recursive scheme as

u0(t, x) = e−x

x ,

u j (t, x) = L−1

⎡
⎣1

2

x∫

0

(x − y)yA jdy −
∞∫

0

xyB jdy

⎤
⎦ , j = 1, 2, . . . ,

⎫⎪⎪⎬
⎪⎪⎭

. (4.13)

Using (4.13) and (4.9), we obtain components as

u0(t, x) = e−x x−1

1
,

u1(t, x) = e−x t

2(1!)2 (x − 2),

u2(t, x) = e−x t2x

3(2!)2
(
x2 − 6x + 6

)
,

u3(t, x) = e−x t3x2

4(3!)2
(
x3 − 12x2 + 36x − 24

)
,

...

u j (t, x) = e−x x j−1t j
[

x j

0!( j + 1)! j ! − x j−1

1!( j)!( j − 1)! + x j−2

2!( j − 1)!( j − 2)!
− x j−3

3!( j − 2)!( j − 3)!
+ · · · + (−1)r

x j−r

r !( j − r + 1)!( j − r)! + · · · + (−1) j−1 x1

( j − 1)!(2)!(1)! + (−1) j

1

j !(1)!(0)!
]
.

The n-term truncated series solution can be obtained as

ψn(t, x) =
n∑
j=0

u j (t, x).

In Table 5, we have shown the error using the formula (4.10). As expected the error
approaches to zero with the increase in number of terms in series solution.

In Figs. 5 and 6, we plot the exact solution u(t, x) and the approximate series
solution ψn(t, x) obtained by the ADM (3.6) for t = 0.5, 1. It can be noted that the
curves of the approximate solutionsψ8 at t = 0.5 andψ16 at t = 1 are almost identical
to the exact solution u(t, x).
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Fig. 5 Comparison of ψn , n = 2, 4, 6, 8 and the exact u with time t = 0.5 of Example 4.8

Fig. 6 Comparison of ψn , n = 10, 12, 14, 16 and the exact u with t = 1 of Example 4.8

Example 4.9 Consider (1.3)–(1.4) with sum kernel a(x, y) = x + y, u0(x) = e−x ,
which has exact solution follows [39]

u(t, x) = (1 − τ) exp(−(1 + τ)x)

x
√

τ
I1(2x

√
τ),

where τ = 1 − e−t and I1(x) is the modified Bessel function of the first kind as in
(4.12).

According to the ADM (3.6), we have
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Table 6 Error of Example 4.9 with time t = 1, x ∈ [0, 10]
n 10 15 20 25 30 35 40

Error 9.77E−02 3.58E−03 3.05E−04 6.17E−05 5.66E−06 5.28E−08 1.86E−08

u0 = e−x ,

u j = L−1
[
1

2

x∫

0

x A jdy −
∞∫

0

(x + y)Bjdy

]
, j = 1, 2, . . . ,

⎫⎪⎪⎬
⎪⎪⎭

(4.14)

Using the recursive scheme (4.14) and (4.9),weobtain solution components as follows:

u0(t, x) = e−x ,

u1(t, x) = 1

2
e−x t

(
x2 − 2x − 2

)
,

u2(t, x) = 1

12
e−x t2

(
6 + 18x − 3x2 − 6x3 + x4

)
,

u3(t, x) = 1

144
e−x t3

(
−24 − 168x − 60x2 + 120x3 + 12x4 − 12x5 + x6

)
,

...

In a similar fashion, we list the error of the Example 4.9 using (4.10) in Table 6. It
is obvious from these that the error decreases as one increases the terms in series
solution.

5 Concluding remarks

In this paper we have shown the application of Adomian decomposition method for
solving the fragmentation and the aggregationpopulationbalance equations.TheADM
provides a direct recursive scheme for obtaining the exact as well as approximate solu-
tions. It is well known that the ADM allows to solve both nonlinear initial and bound-
ary value problems without unphysical restrictive assumptions such as linearization,
discretization, perturbation and guessing the initial term or a set of basis functions.
Convergence of the series solution has been discussed. Convergence analysis is reli-
able enough to estimate the maximum absolute truncated error of the series solution.
We have examined the accuracy and the performance of the method by solving several
examples. It is also worth noting that in this work, we have been able to obtain some
exact solutions of the fragmentation population balance equations for some kernels
and selection functions. It has been observed that only few terms of the series solution
are enough to obtain accurate approximations to the solution.
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