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Abstract In this work an efficient and accurate numerical

scheme based on the finite volume method has been

introduced to approximate the pure breakage population

balance equations. The scheme is designed to conserve the

total mass of the particles in the system. The simplicity of

both the discrete formulation and its coding are the key

features of the new method. It is seen that besides con-

serving the total mass, the new scheme also gives a better

prediction of the total number of the particles in the system

as compared to the finite volume scheme of Kumar et al.

(Appl Math Comput 219(10):5140–5151, 2013). Unlike

[13], the scheme in this paper is computationally very

efficient and robust to apply on both the uniform and

nonuniform meshes. The development of the new scheme

is completed by providing a detailed consistency and

convergence analysis of the numerical solution. It is

observed that the new scheme is of second order conver-

gent independently of the type of meshes. Moreover,

numerical results are compared against several test prob-

lems, which include the problems whose solutions are

analytically tractable and those which are practically ori-

ented. The mathematical results on convergence analysis of

the new scheme has also been verified numerically.

Keywords Population balance equations � Breakage �
Finite volume scheme � Consistency �
Convergence analysis

1 Introduction

The dynamical process by which particles undergo changes in

their physical properties is called a particulate process. The

study of the particulate process is a well known subject in

various branches of engineering, physics, chemistry, astro-

physics and in many more areas. During the process, sponta-

neous collisions between the particles cause the changes in their

mass, shape, size, volume etc. To study the change of the par-

ticle number density f ðx; tÞ� 0, for particles of volume x� 0 at

time t� 0 in a physical system undergoing fragmentation

process, the following mathematical model known as the pure

breakage population balance equation (BPBE), is required

of ðx; tÞ
ot

¼
Z 1

x

bðx; yÞSðyÞf ðy; tÞ dy� SðxÞf ðx; tÞ: ð1Þ

The Eq. (1) is supplemented by the initial data,

f ðx; 0Þ ¼ f0ðxÞ� 0: ð2Þ

Without any loss of generality, we consider x and t to be

dimensionless quantities [Ref. [24]]. In Eq. (1), S(x) is the

selection function and it denotes the rate at which particles

of size x are selected to break into smaller fragments. The

breakage function b(x, y) is the probability density function

denoting the formation of particles of size x due to the

breakage of the particles of size y. The breakage function is

considered to satisfy the following conditions:

Z y

0

bðx; yÞ dx ¼ mðyÞ; 8 y[ 0 and bðx; yÞ ¼ 0; 8 x� y

ð3Þ

andZ y

0

xbðx; yÞ dx ¼ y; 8 y[ 0: ð4Þ
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The function mðyÞ in Eq. (3), represents the total number of

fragments in which the particle of size y has split during

breakage and trivially mðyÞ� 1. In general, when a particle

of mass y breaks into smaller fragments then the total mass

of the fragments formed is equal to y, which has been

represented by Eq. (4). For a system which conserves the

total mass during fragmentation process, the breakage

function b(x, y) is considered to follow Eq. (4).

In the right hand side of Eq. (1), the first term is called

the birth term because it denotes the addition of particles of

size x in the system due to the breakage of the bigger

particle of size y and the second term is called the death

term as it removes the particles of size x from the system

by breaking them into smaller fragments.

In the literature some authors have dealt with a special

form, called the mass conservative form of (1). Referring to

[13], a mass conservative formulation of the Eq. (1) is

written in the following form,

xof ðx; tÞ
ot

¼ o

ox

Z 1

x

Z x

0

ubðu; vÞSðvÞf ðv; tÞ du dv
� �

; x[ 0:

ð5Þ

The mathematical results on the existence and uniqueness

of the solutions of the Eq. (1) in different measure spaces

can be found in [3, 17, 18, 21, 22, 25, 28, 29], with suitable

bounds over the selection and the breakage functions. But

it is seen in the articles [2, 26, 30, 31] that analytical

solutions are available only for a limited number of prob-

lems with simple forms of selection and breakage func-

tions. In general, the BPBEs with complicated kernels are

used widely for various practical experiments. Therefore

for those complicated BPBEs, numerical methods are

needed to obtain an approximation of the analytical

solution.

Besides approximating the number density of the pop-

ulation balance equation, the estimation of its moments are

also of great interest in several applications. Moments are

mainly the integral properties of the density function and

some of them represents physical quantities. Moreover,

assessment of different numerical methods usually depend

upon their efficiency and accuracy to approximate f(x, t)

and its moments. Due to these reasons we formally define

the pth moment of the number density function as

MpðtÞ ¼
Z 1

0

xpf ðx; tÞ dx: ð6Þ

From the physical point of view, the zeroth moment M0

and the first moment M1 are respectively, proportionate to

the total number and the total mass of the particles in the

system at time t. For the first moment, using the condition

(4) it can easily be shown that the following relation is

satisfied,

dM1

dt
¼ 0: ð7Þ

The Eq. (7) represents mass conservation law of the pop-

ulation balance model represented by Eqs. (1) and (2).

In Eq. (1) we see that the range of the volume variable

x varies from 0 to 1. To apply a numerical scheme it is

necessary to fix a finite range of the computational

domain. Let us fix our computational domain as �0; xmax�,
where 0\xmax\1. Hence, for x 2�0; xmax� and time

t 2�0; T �, T\1, the truncated BPBE takes the following

form

of ðx; tÞ
ot

¼
Z xmax

x

bðx; �ÞSð�Þf ð�; tÞ d�� SðxÞf ðx; tÞ ð8Þ

with the truncated initial data

f ðx; 0Þ ¼ f0ðxÞ ¼ f inðxÞ� 0; x 2�0; xmax�: ð9Þ

Similarly, the limits of the integrals in the Eq. (5) are

changed accordingly to obtain the following truncated

equation

xof ðx; tÞ
ot

¼ o

ox

Z xmax

x

Z x

0

ubðu; vÞSðvÞf ðv; tÞ du dv
� �

;

x 2�0; xmax�:
ð10Þ

1.1 Existing literatures

In literature the numerical methods like, finite volume

methods [4, 5, 10, 13], stochastic methods [19, 23],

moment methods [7, 8], sectional methods [9, 16] etc. have

been used widely to approximate different forms of the

population balance equations (PBEs). With the develop-

ment of a new numerical scheme it is of great interest for

the researchers to study the complete convergence and

consistency analysis of that scheme. In this part of the

study let us have a review over the literature concerning the

development and convergence analysis of the finite volume

approximations of the PBEs. To our knowledge, an inter-

esting work in this regard is done by Bourgade and Filbet

in [1]. In [1], the authors have proposed a finite volume

approximation of the coupled aggregation-binary frag-

mentation PBEs, in the light of the work of Filbet and

Laurençot [4]. Besides, a detailed convergence analysis of

the numerical scheme has been provided in [1], where a

wide class of aggregation and breakage kernels have been

chosen from the space L1locðRþ � R
þÞ, Rþ ¼ ½0;1½. It is to

be noted that in both the works [1, 4], the authors have

considered the mass conservative formulation of the PBEs.

Very recently, Kumar et al. [13] have developed a finite

volume scheme approximating the mass conservative form

of the pure multiple fragmentation equation (5) and proved

the convergence of the approximating solutions. In the

article [15], Kumar et al. have developed finite volume
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schemes of coupled aggregation-fragmentation equations

and in [14] they extended the idea for the PBEs incorpo-

rating aggregation, fragmentation, growth and nucleation.

Furthermore, a detailed convergence and stability analysis

of the scheme proposed in [15] have been provided. It is

found in [15], that the order of convergence of the scheme

approximating the coupled aggregation-fragmentation

equation depends upon the type of meshes, whereas in [13],

the scheme approximating the pure BPBE (5), is of second

order convergent independently of the meshes.

Other than the above mentioned finite volume

approximations of the population balance equations, the

convergence analysis of the sectional methods are also

available in the literature. In the articles [11, 12], Kumar

and Warnecke have done the convergence and stability

analysis of the two very well known and efficient

numerical schemes, the fixed pivot technique (FPT) and

the cell average technique (CAT), approximating the

pure multiple fragmentation problems in the form of the

Eq. (1). The breakage kernels S(x) and b(x, y) are taken

to be twice continuously differentiable functions. It is

seen that the convergence rates of FPT and CAT depend

upon the different types of meshes. It is also found that

on some non-uniform meshes the FPT does not converge

whereas the CAT is convergent (of order 1) on those

meshes.

The work of Forestier-Coste and Mancini [5] is different

from those the previous ones. A numerical approximation

of the pure aggregation population balance equation by

applying finite volume scheme directly to the Smolu-

chowski equation has been developed. However, it is found

that the developed scheme is unable to conserve the total

mass of the system. So, suitable adjustments are made in

the scheme so that the modified scheme is able to conserve

the total mass of the system. The theory has also been

validated numerically by considering different forms of the

aggregation kernel.

1.2 State of art

Our work is motivated upon the works of Forestier-Coste

and Mancini [5]. In this work a population balance equa-

tion having pure multiple fragmentation (1) has been

considered. The finite volume method has been applied to

approximate the solution of the Eq. (1). But it is seen that

the approximated scheme is unable to conserve the total

mass of the system. So, suitable changes are made in the

discrete scheme to obtain a mass conservative numerical

approximation of the truncated equation (8). Furthermore,

the completeness of the work has been done by providing a

detailed consistency and the convergence analysis of the

numerical scheme for the problems whose kernels, S(x) and

b(x, y) are twice continuously differentiable functions. All

the mathematical results have been validated numerically

for different test problems over different types of locally

uniform and non-uniform meshes.

There are many finite volume approximations of the

breakage population balance equations available in the

literature. So, it is not possible to compare our work with

the exhaustive list. Since, the newly developed finite

volume scheme in this work approximates the one

dimensional BPBEs so we compare the efficiency and

novelty of the scheme to the recent finite volume scheme

introduced in [13]. For the ease of discussion, let us

denote the finite volume scheme of [13] as the existing

finite volume scheme (EFVS) and the new scheme

introduced in this paper as mass conserving finite volume

scheme (MCFVS). Since, the EFVS has been developed

from the mass conservative formulation of the BPBE (5)

so both the MCFVS and EFVS are able to conserve the

total mass of the system. Compared to EFVS, the addi-

tional novelty of the MCFVS is that it provides a better

estimation of the total number of particles in the system.

It is to be noted that the MCFVS has been developed by

applying the finite volume method directly to the mul-

tiple breakage equation (1). As a result, MCFVS is

simple and hence easy to code whereas owing to the

nature of the continuous equation (5), the EFVS is much

more complex and so is its coding. Thus from the per-

spective of computation, simplicity in coding is an

additional feature of the MCFVS. In the Sect. 4 several

test cases have been considered to observe that MCFVS

is much more efficient as it gives a better approximation

of the zeroth moment compared to EFVS.

The outline of this paper is as follows. In Sect. 2, the

domain has been discretized into small grids and the new

finite volume scheme approximating the population bal-

ance equation (1) has been developed. Mathematical

analysis which includes the consistency and convergence

of the newly developed scheme is done in the Sect. 3.

Numerical comparison and verification of the mathematical

results obtained in the previous sections has been done in

Sect. 4 and finally Sect. 5 has been devoted for an overall

discussion.

2 The new method

2.1 The discretization method

Let us consider the truncated pure breakage population

balance equation (8) along with the initial data (9). We

proceed to the discretization procedure firstly, by dividing

the continuous computational domain �0; xmax� into a finite

Ið\1Þ number of subintervals or cells. In this dis-

cretization technique we shall approximate the total
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number of particles in these I number of subintervals. So,

for notational convenience, let us denote those I subinter-

vals as,

Ki :¼�xi�1=2; xiþ1=2�; i ¼ 1; 2; . . .; I;

where

x1=2 ¼ 0; xIþ1=2 ¼ xmax and Dxi :¼ xiþ1=2 � xi�1=2:

Let

Dx ¼ max
i

Dxi; i ¼ 1; 2; . . .; I:

The center of each cell Ki, i.e., xi ¼
xi�1=2 þ xiþ1=2

2
is

referred as the pivot or the grid point of the cell, because it

is actually the representative of all size of particles in the

cell Ki. This type of partitioning of the cell is known as cell

centered representation of the cell Ki.

Let fi denotes the average value of the number density in

the ith cell, i.e.,

fiðtÞ ¼
1

Dxi

Z xiþ1=2

xi�1=2

f ðx; tÞ dx: ð11Þ

Assuming sufficient smoothness of the number density

f(x, t), by mid-point rule we can have,

fiðtÞ ¼ f ðxi; tÞ þ OðDx2i Þ: ð12Þ

Thus, fi and f ðxi; tÞ are same up to the order of Dx2. Now,
integrating the Eq. (8), over each cell Ki gives us a system

of equations,

dfi

dt
¼ Bi � Di; i ¼ 1; 2; . . .; I: ð13Þ

with the initial data,

fið0Þ ¼ f ini ¼ 1

Dxi

Z xiþ1=2

xi�1=2

f0ðxÞ dx; ð14Þ

where

Bi ¼
1

Dxi

Z xiþ1=2

xi�1=2

Z xIþ1=2

x

bðx; �ÞSð�Þf ð�; tÞ d� dx ð15Þ

and

Di ¼
1

Dxi

Z xiþ1=2

xi�1=2

Sðx; tÞf ðx; tÞ dx: ð16Þ

Let f, f in, B, D 2 R
I , are the vectors whose semi-discrete

ith components are defined to be fi, f ini , Bi and Di

respectively. So, the semi-discrete vector form of the

Eqs. (13) and (14) is,

df

dt
¼ B� D;

fð0Þ ¼ f in:

9=
; ð17Þ

2.2 Formulation of the new scheme

In this part of our study we will develop a new finite

volume approximation of the Eq. (13). There are many

important numerical schemes available in the literature that

has been developed based on the finite volume scheme. But

those schemes are developed from the mass conservative

formulation of the PBEs. It is of great interest to investigate

the scheme that has been developed just by replacing the

integrals appearing in the Eq. (13) directly by the quadra-

ture rules. To begin with, we formulate the semi-discrete

forms of the birth and the death terms generated due to the

application of mid-point quadrature rule to Eq. (13). Let us

consider the birth term

Bi ¼
1

Dxi

Z xiþ1=2

xi�1=2

Z xIþ1=2

x

bðx; �ÞSð�Þf ðx; tÞ d� dx:

Changing the order of integration,

Bi ¼
1

Dxi

Z xiþ1=2

xi�1=2

Sð�Þf ð�; tÞ
Z �

xi�1=2

bðx; �Þ dx d�
"

þ
XI
k¼iþ1

Z xkþ1=2

xk�1=2

Sð�Þf ð�; tÞ
Z xiþ1=2

xi�1=2

bðx; �Þ dx d�
# :

Using the mid-point approximation for the outer integrals,

Bi ¼ SðxiÞfi
Z xi

xi�1=2

bðx; xiÞ dxþ
1

Dxi

XI
k¼iþ1

SðxkÞfkDxk

�
Z xiþ1=2

xi�1=2

bðx; xkÞ dxþOðDx2Þ

¼ 1

Dxi

XI
k¼i

SkfkDxk

Z pi
k

xi�1=2

bðx; xkÞ dxþOðDx2Þ;

ð18Þ

where

pik ¼
xi; when k ¼ i;

xiþ1=2; elsewhere.

�

The selection function at xi is denoted by Si. Similarly, by

applying the mid-point approximation it can be proved that,

Di ¼ Sifi þOðDx2Þ: ð19Þ

Therefore, using Eqs. (18) and (19) the semi-discrete form

of the Eq. (13) obtained by the application of mid-point

quadrature rule is,

df̂i
dt

¼ 1

Dxi

XI
k¼i

Skf̂kDxk

Z pi
k

xi�1=2

bðx; xkÞ dx� Sif̂i; ð20Þ

along with the initial data

f̂ið0Þ ¼ fið0Þ; ð21Þ

where, f̂i is the numerical approximation of the solution fi.

Hence, the solution of the semi-discrete system (20) and
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(21) can be used to approximate the solution of the BPBEs

(1) and (2).

It has been already mentioned that the total mass of the

system is proportionate to the first moment of the number

density function. Therefore, using the analogy with the

continuous Eq. (7), a discrete system is said to conserve the

total mass if

d

dt

XI
i¼1

xif̂iDxi

 !
¼ 0: ð22Þ

However, in the following theorem, it will be observed that

the proposed discrete formulation (20) fails to conserve the

total mass of the system.

Theorem 2.1 The discrete formulation (20) does not

conserve the total volume or mass; that is,

d

dt

XI
i¼1

xif̂iDxi
� �

6¼ 0: ð23Þ

Proof Let us multiply xi on both sides of the formulation

(20) and then summing over i we obtain

d

dt

XI
i¼1

ðxif̂iDxiÞ ¼
XI
i¼1

xi
XI
k¼i

Skf̂kDxk

Z pi
k

xi�1=2

bðx; xkÞ dx

�
XI
i¼1

xiSif̂iDxi ð24Þ

Changing the order of the sums and using the fact thatR xk
0
xbðx; xkÞ dx ¼ xk we get,

d

dt

XI
i¼1

ðxif̂iDxiÞ ¼
XI
k¼1

Skf̂kDxk
Xk
i¼1

xi

Z pi
k

xi�1=2

bðx; xkÞ dx

�
XI
i¼1

xiSif̂iDxi

¼
XI
k¼1

Skf̂kDxk
Xk
i¼1

xi

Z pi
k

xi�1=2

bðx; xkÞ dx� xk

" #

¼
XI
k¼1

Skf̂kDxk
Xk
i¼1

xi

Z pi
k

xi�1=2

bðx; xkÞ dx
"

�
Xk
i¼1

Z pi
k

xi�1=2

xbðx; xkÞ dx
#

¼
XI
k¼1

Skf̂kDxk
Xk
i¼1

Z pi
k

xi�1=2

bðx; xkÞðxi � xÞ dx
" #

6¼ 0:

ð25Þ

This proves the assertion (23) of the Theorem 2.1. h

However for a particulate system, besides approxi-

mating the number density function it is also utmost

necessary that the numerical scheme conserves the total

mass of the system. Since the discrete formulation (20)

fails to conserve the total mass of the particulate system

so it can not be a suitable method to approximate (1).

This drawback leads us to develop a new numerical

scheme which conserve the total mass of the system. This

new scheme is developed by certain appropriate changes

in the death terms of the relation (20) such that it satisfies

the mass conservation laws. So, using the particle number

density approximations the discrete formulation of the

new mass conserving finite volume scheme (MCFVS) is

given by,

df̂i
dt

¼ 1

Dxi

XI
k¼i

Skf̂kDxi

Z pi
k

xi�1=2

bðx; xkÞ dx� xiSif̂i ð26Þ

The weight xi has been introduced so that the scheme can

conserve the total mass of the particles in the system, i.e., it

satisfies Eq. (22). To get the value of xi for which the

formulation (26) satisfies the mass conservation law we

prove the following theorem.

Theorem 2.2 The discrete formulation (26) conserves the

total mass if

xi ¼

Xi

j¼1
xj

Z p
j

i

xj�1=2

bðx; xiÞ dx

xi
: ð27Þ

Proof Starting with the Eq. (26) and proceeding in the

similar manner as done in the proof of Theorem 2.1 and

using (27), we will easily get that

d

dt

XI
i¼1

ðxif̂iDxiÞ ¼ 0:

Hence, the assertion is proved. h

Remark 2.1 The weight xi is independent of the number

density function and the breakage function has been

assumed to be constant in time, therefore it can be calcu-

lated prior to the computation of the system of differential

equations (26). But in general, the breakage function is

time dependent. In that case, the weights have to be cal-

culated at each time step of the computation

For this new numerical scheme let the modified

approximated birth and death terms in each of the ith cell

are written as B̂i and D̂i respectively. So, writing Eq. (26)

in terms of B̂i and D̂i,

df̂i
dt

¼ B̂i � D̂i; i ¼ 1; 2; . . .; I; ð28Þ

along with the initial condition

f̂ið0Þ ¼ fið0Þ; ð29Þ
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where,

B̂i :¼
1

Dxi

XI
k¼i

Skf̂kDxk

Z pi
k

xi�1=2

bðx; xkÞ dx ð30Þ

and

D̂i :¼ xiSif̂i: ð31Þ

Let us denote the vector f̂ ¼ ½f̂1; f̂2; :::; f̂I �. Therefore, the
formulation (28) and (29) take the following spatially

discretized vector form in R
I

df̂

dt
¼ B̂ðf̂Þ � D̂ðf̂Þ ¼: Jðf̂Þ;

f̂ð0Þ ¼ f in

9=
; ð32Þ

where B̂, D̂ 2 R
I are the functions of f̂ whose ith compo-

nents are B̂iðf̂Þ and D̂iðf̂Þ respectively and Jðf̂Þ ¼ ½J1ðf̂1Þ;
J2ðf̂2Þ; . . .; JIðf̂IÞ�.

3 Convergence analysis

Beforewe proceed to check the consistency and convergence

of the semi-discrete system (32), let us first gather some

useful theorems and definitions from Hundsdorfer and Ver-

wer [6] and Linz [20], which will be used in this part of the

study. Let the discrete L1 norm on R
I be defined as

fðtÞk k ¼
XI
i¼1

fiðtÞj jDxi: ð33Þ

Let JðfÞ is the vector function obtained by replacing f̂ with

f in the relation (32).

Definition 3.1 The spatial truncation error is defined by

the residual left by substituting the exact solution f ¼
½f1ðtÞ; f2ðtÞ; . . .; fIðtÞ� in to the equation as

rðtÞ ¼ dfðtÞ
dt

� JðfÞ: ð34Þ

The scheme is called consistent of order p if, for Dx ! 0

krðtÞk ¼OðDxpÞ; uniformly for all t;0� t�T : ð35Þ

Definition 3.2 The global discretization error is defined

by �ðtÞ ¼ fðtÞ� f̂ðtÞ: The scheme is called to be convergent

of order p if, for Dx! 0,

k�ðtÞk ¼ OðDxpÞ; uniformly for all t; 0� t� T : ð36Þ

It is important that our numerical solution remains non-

negative for all t. Let us write M� 0 for a vector M 2 R
I if

and only if all its components are non-negative.

Theorem 3.1 Suppose that JðfÞ is continuous and satis-

fies the Lipschitz condition

kJðfÞ � JðgÞk� Lkf � gk; for all f; g 2 R
I ; L\1:

Then the solution of the semi-discrete system (32) is non-

negative if and only if for any vector f 2 R
I and all i ¼

1; 2; . . .; I and t� 0,

f� 0; fi ¼ 0 ) JiðfÞ� 0:

Proof The proof of this theorem is given in Hundsdorfer

& Verwer [6], Theorem 7.1, Chapter 1. h

Theorem 3.2 Let us assume that a Lipschitz condition on

JðfÞ is satisfied for 0� t� T and for all f, f̂ 2 R
I , i.e., there

exists a Lipschitz constant L\1 such that

kJðfÞ � Jðf̂Þk� Lkf � f̂k; for all f; f̂ 2 R
I ð37Þ

holds. Then a consistent discretization method is also

convergent and the convergence order is the same as the

order of the consistency.

Proof The proof of a generalized version of the above

theorem have been provided in Linz [20]. h

This is the most important theorem of this article. If we

can show that Jðf̂Þ satisfies Lipschitz condition and the

system (32) is consistent, then by the direct application of

the Theorem 3.2 we will get the convergence of the

scheme. Moreover, the convergence order will be the same

of the order of the consistency.

In the following theorem we proceed to check under what

conditions the function Jðf̂Þ satisfiesLipschitz condition (37).

Theorem 3.3 Let us assume that S and b are twice con-

tinuously differentiable functions over �0; xmax� and

�0; xmax���0; xmax�, respectively. Then, for all f, f̂ 2 R
I ,

there exists a L ¼ 2max x2�0;xmax� SðxÞmðxÞ½ �\1, indepen-

dent of Dx, such that the Lipschitz condition over Jðf̂Þ, i.e.,

kJðfÞ � Jðf̂Þk� Lkf � f̂k;

holds good.

Proof Let us first denote

bi;k :¼
Z pi

k

xi�1=2

bðx; xkÞ dx:

Therefore,

JðfÞ � Jðf̂Þ
�� �� ¼

XI
i¼1

JiðfiÞ � Jiðf̂iÞ
�� ��Dxi

¼
XI
i¼1

1

Dxi

XI
k¼i

Skbi;kðfk � f̂kÞDxk � xiSiðfi � f̂iÞDxi

�����
�����Dxi

�
XI
i¼1

XI
k¼i

Skbi;k fk � f̂k
�� ��Dxk þX

I

i¼1

xiSi fi � f̂i
�� ��Dxi

:

ð38Þ

For j� i, implies xj � xi for all j ¼ 1; 2; :::; i and so using it

in (27)
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xi ¼
Pi

j¼1 xjbj;i

xi
�

xi
Pi

j¼1 bj;i

xi
¼ mðxiÞ: ð39Þ

Therefore, using the inequality (39) in the r.h.s. of the

relation (38), we get

JðfÞ � Jðf̂Þ
�� ��� XI

i¼1

XI
k¼i

Skbi;k fk � f̂k
�� ��Dxk

þ
XI
i¼1

mðxiÞSi fi � f̂i
�� ��Dxi:

ð40Þ

Changing the order of the sums in the first term of (40)

JðfÞ � Jðf̂Þ
�� ��� XI

k¼1

Sk fk � f̂k
�� ��DxkX

k

i¼1

bi;k

" #

þ
XI
i¼1

mðxiÞSi fi � f̂i
�� ��Dxi

¼
XI
k¼1

SkmðxkÞ fk � f̂k
�� ��Dxk

þ
XI
i¼1

mðxiÞSi fi � f̂i
�� ��Dxi

¼ 2
XI
k¼1

SkmðxkÞ fk � f̂k
�� ��Dxk

� 2
XI
k¼1

max
k

SkmðxkÞ½ �
	 


fk � f̂k
�� ��Dxk

� 2 max
x2�0;xmax�

SðxÞmðxÞ½ � f � f̂
�� ��

� L f � f̂
�� ��: ð41Þ

where L ¼ 2max x2�0;xmax� SðxÞmðxÞ½ �\1, the Lipschitz

constant independent of Dx. Hence, the function Jðf̂Þ sat-

isfies the Lipschitz criterion. h

Let us now proceed to check whether the scheme (32) is

consistent or not.

3.1 Consistency and convergence

The following theorem is stated and proved to obtain the

order of consistency of the MCFVS (32) for the pure

breakage population balance equations.

Theorem 3.4 Consider the functions S and b are twice

continuously differentiable functions over �0; xmax� and

�0; xmax���0; xmax�, respectively. Then for any family of

meshes, the solution of the semi-discrete system (32) is

non-negative and second order consistent. Moreover, the

method is convergent and the order of convergence is the

same as the order of consistency.

Proof Non-negativity: For any non-negative vector f̂ 2
R

I whose ith component is zero, i.e., for any f̂ 2 R
I with

f̂� 0 and f̂i ¼ 0, the relations (30) and (31) give

B̂iðf̂Þ� 0 and D̂iðf̂Þ ¼ 0:

Hence, Jiðf̂Þ� 0 for all i ¼ 1; 2; . . .; I. Now, applying the

Theorem 3.1 and Theorem 3.3, we get the non-negativity

of the solution f̂.

Consistency: By the definition 3.1 the spatial truncation

error over each of the ith cell is given by

riðtÞ ¼
dfiðtÞ
dt

� JiðfiðtÞÞ ð42Þ

Using the expressions (15), (16), (30) and (31) in the right

hand side of the Eq. (42) we get,

dfiðtÞ
dt

� JiðfiðtÞÞ ¼ ðBi � DiÞ � ðB̂iðfÞ � D̂iðfÞÞ

¼ ðBi � B̂iðfÞÞ � ðDi � D̂iðfÞÞ
: ð43Þ

Now we deal with the terms ðBi � B̂iðfÞÞ and ðDi � D̂iðfÞÞ
separately. By using the relation (18) and (30), we get

ðBi � B̂iðfÞÞ ¼ OðDx2Þ: ð44Þ

Now for the death term from the relations (19) and (31), we

get,

ðDi � D̂iðfÞÞ ¼ 1� xið ÞSifi þOðDx2Þ: ð45Þ

Then

1� xi ¼
1

xi
xi �

Xi
j¼1

xjbj;i

" #

¼ 1

xi

Z xi

0

xbðx; xiÞ dx�
Xi
j¼1

xjbj;i

" #

¼ 1

xi

Xi
j¼1

Z p
j

i

xj�1=2

ðx� xjÞbðx; xiÞ dx

¼ 1

xi

Xi�1

j¼1

Z xjþ1=2

xj�1=2

ðx� xjÞbðx; xiÞ dx
"

þ
Z xi

xi�1=2

ðx� xiÞbðx; xiÞ dx
#
: ð46Þ

With the application of the mid-point approximation for

j ¼ 1; 2; . . .; i� 1 and right-end approximation for j ¼ i we

obtain that the numerator of (46) is of OðDx2Þ.
Hence, we have

1� xi ¼ OðDx2Þ i ¼ 1; 2; . . .; I: ð47Þ

Using the relation (47) in the Eq. (45), we get

ðDi � D̂iðfÞÞ ¼ OðDx2Þ: ð48Þ

Therefore, combining both the cases (44) and (48), we get
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riðtÞ ¼ OðDx2Þ:

Hence, the order of consistency of the mass-conserving

discrete scheme (32), for pure breakage process is obtained

as

rðtÞk k ¼
XI
i¼1

riðtÞj jDxi ¼ OðDx2Þ; ð49Þ

and this order is independent of the type of meshes or

intervals.

Convergence: Combining Theorem 3.2, Theorem 3.3

and the above result on consistency the convergence of the

proposed method is proved. Moreover, Theorem 3.1

implies that the order of convergence is same as the order

of consistency, i.e., 2. h

Remark 3.1 From the work of Dobovskı̌i and Stewart [3],

it can be followed that the smoothness of the kernels S and

b implies the smoothness of the solution function f. In this

work the functions S and b are considered to be twice

continuously differentiable and so the solution function f.

4 Numerical comparison

In this section, we verify the results obtained in Sects. 2

and 3 numerically, i.e., we verify how efficiently the pro-

posed numerical scheme MCFVS estimates the particle

number density and its two moments (zeroth and first) and

also find the experimental (numerical) order of conver-

gence (EOC). The numerical verifications are based on

applying the MCFVS (32) to several test problems over

different types of meshes. Let ½xmin; xmax� be the compu-

tational domain. In order to show that the order of con-

vergence of MCFVS is independent of the type of meshes,

we consider both non-uniform and locally uniform type of

meshes (Ref. [13]).

Due to the nature of formation of the non-uniform

meshes we have taken xmin ¼ 10�9 and xmax ¼ 1 through-

out this work. The dimensionless values of the all the

concerned quantities have been considered during compu-

tation. The dimensionless breakage extent provided in the

paper is obtained by dividing the zeroth moment of the

density function by the initial zeroth moment, i.e.,

M0ðtÞ=M0ð0Þ at the final time of computation. Similarly, in

order to make the particle number density and its first

moment dimensionless, normalization of those properties

are done by dividing their values at different times by their

initial values. A comparison of the normalized first and the

zeroth moment obtained by MCFVS and the EFVS ([13])

has been presented here. The numerical values of EOC and

relative error of the scheme are calculated as in Kumar and

Warnecke [11, 12].

Three different test problems have been considered for

numerical comparison and verification of the mathematical

results. In the first case, a test problem having an exact

solution is taken. The solution can be found in [26, 31].

Since, the exact solution is available we plot the numerical

results of particle number density function, the first and the

zeroth moment against the exact results. The second and

the third case are more practical oriented problems with

complicated breakage functions and initial conditions. The

problems in the test cases II and III, do not possess the

exact solutions. So, in the second and third cases the

number density function cannot be plotted for comparison.

For solving the discrete system (32), MATLAB ODE45

solver is used.

4.1 Test case I

Let us consider a problem with binary breakage function

bðx; yÞ ¼ 2
y
and the quadratic selection function SðxÞ ¼ x2.

Let the number density satisfies the mono-dispersed initial

condition, i.e.,

f ðx; 0Þ ¼ dðx� 1Þ ¼ 0; when 0� x\1;
1; when x ¼ 1:

�
:

The computation is carried out by dividing the domain into

30 initial sub-intervals and at time t ¼ 50. The breakage

extent is obtained as
M0ðtÞ
M0ð0Þ

� 8.

The Fig. 1 represents the prediction of the particle

number density and its first and the zeroth moments against

their exact values. In Fig. 1a, the particle number density is

plotted against the representative of the respective meshes.

It is seen that the overall prediction of the particle number

density is pretty good. In the Fig. 1b the numerical result of

the first and the zeroth moment is compared with the exact

value. It is observed that both the MCFVS and EFVS

conserve the first moment but the numerical results of the

zeroth moment is better when approximated using

MCFVS.

In the Table 1, the relative error along with the EOC

have been calculated for the locally uniform meshes (Table

1a) and the non-uniform meshes (Table 1b). In both the

cases numerical values up to 480 grid points have been

provided. From both the tables, it is observed that the

experimental order of convergence is approximately 2 and

it is independent of the type of meshes.

4.2 Test case II

In this case, we consider a complicated breakage function
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bðx; yÞ ¼ pxcðy� xÞcþðcþ1Þðp�2Þ½cþ ðcþ 1Þðp� 1Þ�!
ycþðcþ1Þðp�1Þ½c�!½cþ ðcþ 1Þðp� 2Þ�! ;

ð50Þ

which is used considerably for various experimental

purposes. As defined in [13, 27], the parameters p and c

of (50) denote the number of fragments and shape factor

respectively. Here, by setting p ¼ 4; c ¼ 2 and p ¼ 8; c ¼
2 we consider two multi-fragmentation problems. Let us

also consider the linear selection function, SðxÞ ¼ x and the

initial condition to satisfy the following normal distribution

f ðx; 0Þ ¼ 1

r
ffiffiffiffiffiffi
2p

p exp �ðx� lÞ2

2r2

" #

where, r2 ¼ 0:01, l ¼ 0:5. The computations are carried

out for 60 initial grids and at time t ¼ 50. For p ¼ 4; c ¼ 2

and p ¼ 8; c ¼ 2 the approximate breakage extents

obtained are 76 and 176, respectively. The exact solution of

this problem is not available in the literature. Therefore, we

are not able to compare exact and the numerical values of

the particle number density function. But due to the linear

selection function we are able to plot the exact values of

the zeroth and the first moments. In the Fig. 2, the

numerical values of the moments have been compared

against the exact values. From the Fig. 2a and b, it is seen

that both the schemes conserve the total mass of the system

but MCFVS gives a better prediction of the total number of

the particles in the system.

The relative error and the EOC of the proposed scheme

MCFVS have been shown in Tables 2 and 3. As desired the

EOC of the MCFVS is approximately 2 and is independent

of the type of the meshes.

4.3 Test case III

In this case we consider two test problems almost similar

to the problems that has been considered in Test case II,

but with a quadratic selection function, SðxÞ ¼ x2. The

breakage functions and the initial conditions are same as

considered in the previous case. The solution of this

problem is also not available in the literature. Due to the

quadratic selection function we can not find the exact

values of the moments. So, only the relative error and

the EOC of the MCFVS have been represented in the

Tables 4 and 5. The computations are done for 60 initial

grids and t ¼ 50. The approximate breakage extent

obtained is 11 for p ¼ 4; c ¼ 2 and 19 when

p ¼ 8; c ¼ 2.
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Fig. 1 Exact and numerical values of the particle number density (left) and the normalized first and the zeroth moments (right) for test case I

Table 1 EOC of the numerical scheme MCFVS for Test case I

Grid points Relative error L1 EOC

(a) Locally uniform meshes

30 0.0301 –

60 0.0083 1.8633

120 0.0021 1.9586

240 0.0005 1.9891

480 0.0001 1.9972

(b) Non-uniform meshes

30 0.0083 –

60 0.0021 1.9586

120 0.0005 1.9891

240 0.0001 1.9972

480 3.1E-5 1.9994
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Fig. 2 Comparison of the numerical and exact values of the moments for test case II

Table 2 EOC of the numerical scheme MCFVS for p ¼ 4; c ¼ 2

(Test case II)

Grid points Relative error L1 EOC

(a) Locally uniform meshes

60 – –

120 1.2942 –

240 0.2916 2.1499

480 0.0711 2.0353

960 0.0177 2.0078

(b) Non-uniform meshes

60 – –

120 0.9159 –

240 0.1834 2.3203

480 0.0455 2.0097

960 0.0114 2.0009

Table 3 EOC of the numerical scheme MCFVS for p ¼ 8; c ¼ 2

(Test case II)

Grid points Relative error L1 EOC

(a) Locally uniform meshes

60 – –

120 3.5039 –

240 0.8023 2.1266

480 0.1973 2.0236

960 0.0491 2.0056

(b) Non-uniform meshes

60 – –

120 2.6103 –

240 0.5533 2.2379

480 0.1378 2.0051

960 0.0344 2.0000

Table 4 EOC of the numerical scheme MCFVS for p ¼ 4; c ¼ 2

(Test case III)

Grid points Relative error L1 EOC

(a) Locally uniform meshes

60 – –

120 0.2458 –

240 0.0572 2.1042

480 0.0140 2.0263

960 0.0035 2.0041

(b) Non-uniform meshes

60 – –

120 0.1841 –

240 0.0391 2.2371

480 0.0097 1.9995

960 0.0024 2.0003

Table 5 EOC of the numerical scheme MCFVS for p ¼ 8; c ¼ 2

(Test case III)

Grid points Relative error L1 EOC

(a) Locally uniform meshes

60 – –

120 0.5592 –

240 0.1289 2.1171

480 0.0318 2.0184

960 0.0079 2.0042

(b) Non-uniform meshes

60 – –

120 0.4231 –

240 0.0934 2.1788

480 0.0234 1.9973

960 0.0058 1.9992
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From the Tables 4 and 5 it is seen that the MCFVS is

second order convergent and is independent of the type of

meshes.

5 Results and discussion

A new numerical method MCFVS has been developed for

the pure multiple breakage population balance equation (1)

using the finite volume approximation. Besides predicting

the particle number density well, the scheme also conserves

the total mass of the particles and gives a better estimation

of the total number of particles in the system as compared

to the most recent finite volume approximation of the

BPBEs [13]. Furthermore, MCFVS is simple scheme and

easy to code. A complete mathematical analysis by

checking the consistency of the error bounds and the order

of convergence of the MCFVS has been done. It is

observed that the proposed numerical scheme is second

order convergent and this rate is independent of the type of

the grids or meshes. The theoretical observations have been

validated with different test cases of numerical examples.

The examples of simple problems whose solutions are

tractable and complex practically oriented problems which

do not have solutions have been considered.
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