Readers who have a copy of my book (Viswanathan K. Iyer, Wiener index of graphs – Some graph-theoretic and computational aspects, LAP Lambert Academic Pubn., Germany – ISBN 978-3-8473-0448-7) may also be interested in the following articles.

1. For a k-connected graph G, the following article gives a lower bound on the Wiener index of G in terms of diameter, radius and number of vertices of G. This may be compared with the bound in the book given in chapter 4.

Seiichi Yamaguchi,
A note on Wiener index

Abstract The Wiener index of a connected graph is equal to the sum of distances between all pairs of its vertices. In this paper, we find a lower bound for the Wiener index in terms of graph invariants.

2. It is known that Knesser graph is a generalization of Odd graph. For readers who liked to see the result of Wiener index of Odd graphs in chapter 3 of the book, the following is another recommended reading.

Rangaswami Balakrishnan and S. Francis Raj
The Wiener number of Knesser graphs

Abstract The Wiener number of a graph G is defined as \(\frac{1}{2} \sum d(u,v)\), where \(u,v \in V(G)\), and \(d\) is the distance function on G. The Wiener number has important applications in chemistry. We determine the Wiener number of an important family of graphs, namely, the Knesser graphs.

3. In some sense the following article gives an extension (and a simplification) of the result given in chapter 7 of the book.

Emeric Deutsch and Sandi Klavzar
Computing Hosoya Polynomials of graphs from primary subgraphs

Abstract The Hosoya polynomial of a graph encompasses many of its metric properties, for instance the Wiener index (alias average distance) and the hyper-Wiener index. An expression is obtained that reduces the computation of the Hosoya polynomials of a graph with cut vertices to the Hosoya polynomial of the so-called primary subgraphs. The main theorem is applied to specific constructions including bouquets of graphs, circuits of graphs and link of graphs. This is in turn applied to obtain the Hosoya polynomial of several chemically relevant families of graphs. In this way numerous known results are generalized and an approach to obtain them is simplified. Along the way several misprints from the literature are corrected.