Bin packing – An approximation algorithm

How good is the FFD heuristic - A weak bound

Problem: We are concerned with storing/packing of objects of different sizes, with the objective of minimizing the amount of wasted space. The bin packing problem is posed formally as follows:

Let \(S = (s_1, \cdots, s_n) \), where \(0 < s_i \leq 1 \) for \(i = 1, \cdots, n \) be the sizes of \(n \) given objects. It is required to find a partition \(U_1, \cdots, U_N \) of \(S \) where the sum of the sizes of the objects in each partition is at most 1 and \(N \) the minimum. It is possible to treat each partition as a bin of unit size. Then the problem is to pack the given objects into as few bins (call this value \(\text{opt}(S) \)) as possible.

It is convenient to refer to \(s_i \) as the corresponding object itself.

Applications: The problem arises packing files on disk tracks, program segments into memory pages, packing TV commercials into station breaks etc.

Worst case: \(\text{opt}(S) = n \) – this necessary and sufficient.

Brute-Force approach: Consider all ways to partition \(S \), so that total size of the objects in each partition is \(\leq 1 \). The number of possibilities exceed \((\frac{n}{2})^\frac{n}{2} \). It is unlikely that the problem can be solved by a polynomial-time algorithm in view of the following result:
THEOREM: The bin packing problem is NP–hard.

The proof follows from a reduction of the subset-sum problem to bin packing.

THE FIRST-FIT DECREASING HEURISTIC (FFD)

- FFD is the traditional name – strictly, it is first-fit nonincreasing.
- An early known approximation algorithm.
- Works on greedy strategy.
- Produces good solutions in practice.
- Has a running time $O(n^2)$ in the worst case.

Algorithm FFD

1. Order the given objects in a non-decreasing order so that we have $s_1 \geq \cdots \geq s_n$. Initialize a counter $N = 0$.
2. Let the bins be B_1, \cdots, B_n. Put the next (first) object in the first “possible” bin, scanning the bins in the order B_1, \cdots, B_n.
 If a new bin is used, increment N.
3. Return N.

Complexity: Step 1 takes $\Theta(n \log n)$ time. In Step 2, the first object requires a scan of B_1 only. Second object requires scanning at most B_1 and B_2; etc. Therefore, the total number of scans is in $O(n^2)$, which is also the worst-case running time of FFD. It can be seen that FDD can be implemented to run in worst-time $\Theta(n \log n)$.
FFD is not optimal

Example: Instance given - 0.6, 0.6, 0.5, 0.4, 0.3, 0.2, 0.2, 0.2.

FFD will pack these as

\[[0.6|0.4], [0.6|0.3|], [0.5|0.2|0.2|], [0.2|].\]

That is \(N = 4 \) in \(FFD \). The optimal value \(\text{opt}(S) = 3 \).

It is easy to see that there are infinite instances that require \(N \) bins by \(FFD \) when \(\text{opt}(S) = N - 1 \).

The theorem below tells how bad can be \(FFD \) - that is, how bad is \(N \) in \(FFD \) as compared to \(\text{opt}(S) \). We begin with two lemmas.

Lemma 1: Let \(S = (s_1, \ldots, s_n) \) with \(s_1 \geq \cdots \geq s_n \). Let \(N > \text{opt}(S) \).
Let \(s \) be the size any object placed by \(FFD \) in any “extra” bin (selected from \(B_{\text{opt}(S)+1}, \ldots, B_N \)). Then \(s \leq \frac{1}{3} \).

Proof: Let \(s_i \) be the first object placed by \(FFD \) in \(B_{\text{opt}(S)+1} \). Since the objects in \(S \) are in nondecreasing order, it suffices to show \(s_i \leq \frac{1}{3} \).

Assume \(s_i > \frac{1}{3} \). This implies that, when \(s_i \) is picked by \(FFD \) \(s_1, \ldots, s_{i-1} > \frac{1}{3} \). Therefore the number of objects in each of the bins \(B_1, \ldots, B_{\text{opt}(S)} \) is \(\leq 2 \).

Claim: There exists a \(k \geq 0 \) such that the first \(k \) bins contain one object each and the remaining \(\text{opt}(S) - k \) bins contain two objects each.

If not, there will be two bins \(B_p \) and \(B_q \) where \(p < q \), as shown below

\[
B_p : [s_t | s_u|] \quad B_q : [s_v|],
\]

where \(B_p \) will have 2 objects and \(B_q \) will have only 1. As the objects are considered by \(FFD \) in nondecreasing order, \(s_t \geq s_v \) and \(s_u \geq s_i \). Hence
1 \geq s_t + s_u \geq s_u + s_i. This implies that \textit{FFD} would have placed \(s_i \) in \(B_q \) and the claim is true.

Therefore, the objects are filled thus:

\[B_1 : [s_1] \, \cdots \, B_k : [s_k] \, \cdots \, B_{k+1} : [s_{k+1}|s_x|] \cdots. \]

Since \textit{FFD} did not place any of \(s_{k+1}, \cdots, s_i \) in the first \(k \) bins, none of these objects will fit together with any of \(s_1, \cdots, s_k \) in any bin. That is, in the optimal solution, the objects \(s_1, \cdots, s_k \) are the sole objects in their bins.

Without loss of generality, let these bins be the first \(k \) bins in the optimal solution; the remaining objects \(s_{k+1}, \cdots, s_{i-1} \) will be in bins \(B_{k+1}, \cdots, B_{\text{opt}(S)} \).

As the sizes of all these objects are \(> \frac{1}{3} \) and as these bins contain two objects, \(s_i \) cannot fit into any bin in the optimal solution. This is a contradiction and therefore the assumption \(s_i > \frac{1}{3} \) must be false.

\[\text{Lemma 2: For any instance } S = (s_1, \cdots, s_n), \text{ the total number of objects placed by } \textit{FFD} \text{ in the extra bins is } \leq \text{opt}(S) - 1. \]

\[\text{Proof: All the objects can be packed into } \text{opt}(S) \text{ bins. Therefore} \]

\[\sum_{i=1}^{n} s_i \leq \text{opt}(S). \] (1)

Assume that \textit{FFD} places \text{opt}(S) objects with sizes \(t_1, \cdots, t_{\text{opt}(S)} \) in the extra bins.

Let \(b_j = \text{final contents (size) of bin } B_j, \text{ where } 1 \leq j \leq \text{opt}(S). \)

Now, \(b_j + t_j > 1 \) as otherwise \textit{FFD} could have placed \(t_j \) in \(B_j \).
Therefore

\[
\sum_{i=1}^{n} s_i \geq \sum_{j=1}^{opt(S)} b_j + \sum_{j=1}^{opt(S)} t_j = \sum_{j=1}^{opt(S)} (b_j + t_j) > opt(S).
\]

(2)

Clearly, (2) contradicts (1). Therefore the assumption is wrong. ■

Theorem: For an input instance \(S \), let \(\rho_{FFD}(m) \) be defined as \(N/m \), where \(N \)=value returned by \(FFD \) and \(m = opt(S) \). Then

\[
\rho_{FFD}(m) \leq \frac{4}{3} + \frac{1}{3m}.
\]

(3)

Proof: \(FFD \) puts at most \(m - 1 \) objects into the extra bins. Each of those objects have a size \(\leq \frac{1}{3} \). Therefore

\[
N \leq m + \left\lceil \frac{(m-1)}{3} \right\rceil.
\]

Now, \(\rho_{FFD}(m) = \frac{N}{m} \leq 1 + \frac{m+1}{3m} \leq \frac{4}{3} + \frac{1}{3m} , \)

which establishes (3). ■

The known stronger result is: \(\rho_{FFD}(m) \leq \frac{11}{9} + \frac{4}{m} \). It has been emperically found that the expected number of extra bins used by \(FFD \) is about \(0.3\sqrt{n} \).

Reference