# M. Tech Degree

# IN

# WELDING ENGINEERING



SYLLABUS
FOR
CREDIT BASED CURRICULUM
(For the students admitted in the year 2024)

Department of Metallurgical and Materials Engineering
NATIONAL INSTITUTE OF TECHNOLOGY
Tiruchirappalli - 620 015

#### VISION OF THE INSTITUTE

• To be a university globally trusted for technical excellence where learning and research integrate to sustain society and industry.

#### MISSION OF THE INSTITUTE

- To offer undergraduate, postgraduate, doctoral and modular programmes in multi-disciplinary / inter-disciplinary and emerging areas.
  - To create a converging learning environment to serve a dynamically evolving society.
- To promote innovation for sustainable solutions by forging global collaborations with academia and industry in cutting-edge research.
  - To be an intellectual ecosystem where human capabilities can

#### VISION OF THE DEPARTMENT

To evolve into a globally recognized department in the frontier areas of Metallurgical and Materials Engineering.

#### MISSION OF THE DEPARTMENT

- To produce Metallurgical and Materials Engineering graduates having professional excellence.
- To carry out quality research having social & industrial relevance.
  - To provide technical support to budding entrepreneurs and existing industries

# PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

| PEO1 | Select their profession as Welding Engineer in Industries as well as in expanding areas |  |  |
|------|-----------------------------------------------------------------------------------------|--|--|
|      | of materials, power and energy-related fields.                                          |  |  |
| PEO2 | Practice effectively in the emerging and modern Industrial environment with lead role   |  |  |
|      | and make timely development toward an establishing newer technology in welding          |  |  |
|      | related fields or business.                                                             |  |  |
| PEO3 | Pursue their careers in academia and develop entrepreneur skill                         |  |  |

# PROGRAMME OUTCOMES (POs)

| PO1 | An ability to independently carry out research/investigation and development work to |  |  |
|-----|--------------------------------------------------------------------------------------|--|--|
|     | solve practical problems.                                                            |  |  |
| PO2 | An ability to write and present a substantial technical report/document.             |  |  |
| PO3 | Students should be able to demonstrate a degree of mastery over the area as per the  |  |  |
|     | specialization of the program. The mastery should be at a level higher than the      |  |  |
|     | requirements in the appropriate bachelor program.                                    |  |  |

# CURRICULUM FRAMEWORK / FLEXIBLE CURRICULUM / NEP 2020 / M. Tech. / M. Arch.

| Components              | Number of<br>Courses | Number of<br>Credits | Senate Suggestions               |
|-------------------------|----------------------|----------------------|----------------------------------|
| Programme Core (PC)     | 3 / Semester         | 44                   | 4 or 3 credits can be the        |
|                         | (6 / Year)           |                      | combination of Programme         |
| Programme Elective      | 3 / Semester         |                      | Core (PC) and Programme          |
| (PE)                    | (6 / Year)           |                      | Elective (PE)                    |
| Essential Laboratory    | 2 / Year             | 4                    | 2 Credits / ELR (If the          |
| Requirements (ELR)      |                      |                      | department opts for 2 Essential  |
|                         |                      |                      | Laboratory Requirements          |
|                         |                      |                      | (ELR) per year, totaling 4       |
|                         |                      |                      | credits, the remaining 2 credits |
|                         |                      |                      | can be allocated to PC or PE     |
|                         |                      |                      | courses)                         |
| Internship / Industrial | 1                    | 2                    | -                                |
| Training / Academic     |                      |                      |                                  |
| Attachment (I/A)        |                      |                      |                                  |
| Open Elective (OE) /    | 2                    | 6                    | Open Elective (OE) / Online      |
| Online Course (OC)      |                      |                      | Course (OC) can be completed     |
|                         |                      |                      | between 1 – 4 semesters          |
| Project Phase-I         | 1                    | 12                   | Third Semester                   |
| Project Phase-II        | 1                    | 12                   | Fourth Semester                  |
| Total                   |                      | 80                   | -                                |



#### **CURRICULUM**

#### **SEMESTER I**

| Code  | Course of Study                                                  | Credit |
|-------|------------------------------------------------------------------|--------|
| MA613 | Engineering Mathematics                                          | 4      |
| MT601 | Design of Weldments                                              | 4      |
| MT603 | Joining of Materials – I                                         | 4      |
|       | Programme Elective I                                             | 4      |
|       | Programme Elective II                                            | 3      |
|       | Programme Elective III                                           | 3      |
| MT609 | Metallography, Materials Testing and Characterization Laboratory | 2      |
|       |                                                                  | 24     |

# **SEMESTER II**

| Code  | Course of Study             | Credit |
|-------|-----------------------------|--------|
| MT602 | Welding Metallurgy          | 4      |
| MT604 | Welding Codes and Standards | 4      |
| MT606 | Joining of Materials – II   | 4      |
|       | Programme Elective IV       | 4      |
|       | Programme Elective V        | 3      |
|       | Programme Elective VI       | 3      |
| MT610 | Welding Laboratory          |        |
|       |                             | 24     |

## **SUMMER TERM** (evaluation in the III semester)

|       | Course of Study                                                    | Credit |
|-------|--------------------------------------------------------------------|--------|
| MT612 | MT612 Internship / Industrial Training / Academic Attachment (I/A) |        |
|       | (6 weeks to 8 weeks)                                               | _      |

#### **SEMESTER III**

| Code  | Course of Study        |    |
|-------|------------------------|----|
| MT613 | Project Work (Phase I) | 12 |

#### **SEMESTER IV**

| Code  | Course of Study         | Credit |
|-------|-------------------------|--------|
| MT614 | Project Work (Phase II) | 12     |

# **OPEN ELECTIVES** (can be completed between 1-4 Semesters)

| Code  | Course of Study                         | Credit |
|-------|-----------------------------------------|--------|
| MTXXX | Open elective / online course - 1       | 3      |
| MTXXX | MTXXX Open elective / online course - 2 |        |
|       | TOTAL CREDITS                           | 80     |



# PROGRAMME ELECTIVES (PE)

| Sl. No.        | Code  | Course of Study                               | Credit   |  |
|----------------|-------|-----------------------------------------------|----------|--|
| 1.             | MT661 | Physical Metallurgy                           | 4        |  |
| 2.             | MT662 | Testing, Inspection and Characterization      | 4        |  |
| 3.             | MT663 | Mechanical Behaviour of Materials             | 3        |  |
| 4.             | MT664 | Corrosion Engineering                         | 3        |  |
| 5.             | MT665 | Computational Techniques                      | 3        |  |
| 6.             | MT666 | Metallurgical Failure Analysis                | 3        |  |
| 7.             | MT667 | Surface Engineering                           | 3        |  |
| 8.             | MT668 | Modeling in Materials Processing              | 3        |  |
| 9.             | MT669 | Automotive Materials                          | 3        |  |
| 10.            | MT670 | Nanomaterials and Technology                  | 3        |  |
| 11.            | MT671 | Advanced Electrochemical Techniques           | 3        |  |
| 12.            | MT672 | Developments in Iron Making and Steel Making  | 3        |  |
| 13.            | MT673 | Additive Manufacturing                        | 3        |  |
| 14.            | MT674 | Phase Transformations                         | 3        |  |
| 15.            | MT675 | Crystallography                               |          |  |
| 16.            | MT676 | Particulate Technology                        | 3        |  |
| 17.            | MT677 | Process Modeling                              | 3        |  |
| 18.            | MT678 | Advanced Material Characterization Techniques | 3        |  |
| 19.            | MT679 | Non-Destructive Testing                       | 3        |  |
|                |       | PROGRAMME SPECIFIC ELECTIVES                  | <b>I</b> |  |
| 20.            | MT701 | Electrical Aspects of Welding                 | 3        |  |
| 21.            | MT702 | Welding Application Technology                | 3        |  |
| 22.            | MT703 | Repair Welding and Reclamation                | 3        |  |
| 23.            | MT704 | Life Assessment of Welded Structures          | 3        |  |
| 24.            | MT705 | Welding Economics and Management              | 3        |  |
| OPEN ELECTIVES |       |                                               | 1        |  |
| 25.            | MT761 | Design and Selection of Materials             | 3        |  |
| 26.            | MT762 | Statistical Quality Control and Management    | 3        |  |
| 27.            | MT763 | Intellectual Property Rights 3                |          |  |
| 28.            | MT764 | Innovation and Product Development 3          |          |  |
| 29.            | MT765 | Energy Storage Systems                        | 3        |  |
|                | I     | ı                                             |          |  |



| Ī | 30. | MT766 | Artificial Intelligence in Materials Engineering | 3 |
|---|-----|-------|--------------------------------------------------|---|
| ſ | 31. | MT767 | Molecular Modeling of Materials                  | 3 |



# **Syllabus**

| Course Code          | : | MA613                                 |
|----------------------|---|---------------------------------------|
| Course Title         |   | Engineering Mathematics               |
| Type of Course       | : | PC                                    |
| Prerequisites        |   | NIL                                   |
| <b>Contact Hours</b> | : | 4 (3 L, 1 T)                          |
| Course Assessment    | : | Continuous Assessment, End Assessment |
| Methods              |   |                                       |

#### **Course Learning Objectives (CLO)**

| CLO1 | To make the students mathematically strong for solving engineering and scientific problems   |
|------|----------------------------------------------------------------------------------------------|
| CLO2 | To train students with mathematical aspects to comprehend, analyze, design, and create novel |
|      | products and solution for the real-life problems.                                            |
| CLO3 | To familiarize the students with Euler-Lagrange's equation and fundamental concepts in       |
|      | calculus of variations.                                                                      |

#### **Course Content**

- Partial Differential equations basic concepts One dimensional heat flow equation Two-dimensional heat flow equation in steady flow in Cartesian and Polar coordinates.
- Calculus of variations Euler's equation Variational problems in parametric form Natural boundary condition Conditional Extremum Isoperimetric problems.
- Numerical Solution of ODE's Euler's, Taylor's and Runge-Kutta methods Milne's and Adams' predictor-corrector methods.
- Finite difference scheme for elliptic, parabolic, and hyperbolic partial differential equations.
- Introduction to Finite Element Method Rules for forming interpolation functions Shape functions Application to fluid flow and heat transfer problems. MATLAB tutorials.

#### References

| 1. | Grewal, B.S., Higher Engineering Mathematics, Khanna Publishers, New Delhi, India, 2012.          |
|----|---------------------------------------------------------------------------------------------------|
| 2. | Elsgolts, L., Differential Equations and the Calculus of Variations, Mir Publishers, MOSCOW, 1977 |
| 3. | Jain, M.K., Iyengar, S.R., and Jain, R.K., Numerical Methods for Scientific and Engineering       |
|    | Computation, New Age International (P) Limited, New Delhi, India, 2019.                           |
| 4. | Veerarajan, T., Numerical Methods, Volume III, Tata McGraw Hill Edition, New Delhi, 2009.         |
| 5. | Reddy, J.N., Introduction to Finite Element Method, Mcgraw Hill, Hightstown, New Jersey, 1993.    |
|    | Desai, C.S. and Abel, J. P., Introduction to Finite Element Method, CBS Publishers & Distributors |
|    | Pvt Ltd, New Delhi, India, 2005.                                                                  |

#### **Course Outcomes (CO)**

| CO1  | To identify, formulate and solve engineering problems such as one dimensional and two-                                                 |
|------|----------------------------------------------------------------------------------------------------------------------------------------|
|      | dimensional heat transfer problems.                                                                                                    |
| CO2  | Formulate and solve variational problems in parametric form, ostrogradsky equation and                                                 |
|      | isoperimetric problems.                                                                                                                |
| CO3  | Compute numerical solution of ordinary differential equations using various numerical techniques.                                      |
| CO 4 | Discretize and solving the partial differential equations associated with general engineering problems using finite difference scheme. |
| CO5  | Apply advanced numerical method such as finite element method to solve heat transfer problems.                                         |



| Course<br>Code | Course Title               | СО  | Course outcomes At the end of the course, students will be able                                                                        | PO1 | PO2 | PO3 |
|----------------|----------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| MA613          | Engineering<br>Mathematics | CO1 | To identify, formulate and solve engineering problems such as one dimensional and two-dimensional heat transfer problems.              | Н   | L   | Н   |
|                |                            | CO2 | Formulate and solve variational problems in parametric form, ostrogradsky equation and isoperimetric problem                           | Н   | L   | Н   |
|                |                            | СОЗ | Compute numerical solution of ordinary differential equations using various numerical techniques                                       | Н   | L   | M   |
|                |                            | CO4 | Discretize and solving the partial differential equations associated with general engineering problems using finite difference scheme. | Н   | L   | Н   |
|                |                            | CO5 | Apply advanced numerical method such as finite element method to solve heat transfer problems                                          | Н   | L   | Н   |



| <b>Course Code</b>   |           | :  | MT601                                 |
|----------------------|-----------|----|---------------------------------------|
| Course Title         |           | •• | Design of Weldments                   |
| Type of Course       |           |    | PC                                    |
| Prerequisites        |           | :  | NIL                                   |
| <b>Contact Hours</b> |           | •• | 4 (3 L, 1 T)                          |
| Course A             | ssessment |    | Continuous Assessment, End Assessment |
| Methods              |           |    |                                       |

| CLO1 | Design weld joins operating under static and dynamic loading conditions.                        |
|------|-------------------------------------------------------------------------------------------------|
| CLO2 | Analyse and predict the life of weld joints using the concepts of fracture mechanics and        |
|      | identifying the effects of stress concentration build up.                                       |
| CLO3 | Learn the various types of stresses & distortions induced in a component as a result of Welding |

#### **Course Content**

- Weld joints, weld symbols, and joint design principles. Weld design for static loading: Designing for strength and rigidity, Material section properties, design under different loading.
- Weld design for dynamic loading: Design for fluctuating and impact loading dynamic behavior of joints - stress concentrations - fatigue analysis - fatigue improvement techniques - permissible stress- life prediction. Principles and methods and practical approach for crack arresting
- Concept of stress intensity factor LEFM and EPFM concepts brittle fracture- transition temperature approach fracture toughness testing, application of fracture mechanics to fatigue, weldments design for high temperature applications.
- Welding residual stresses causes, occurrence, effects, and measurements thermal and mechanical relieving; types of distortion factors affecting distortion distortion control methods prediction correction, jigs, fixtures, and petitioners.

#### References

|    | ices                                                                                               |
|----|----------------------------------------------------------------------------------------------------|
| 1. | Parmer. R. S. "Welding Engineering and Technology", Khanna Publications, 1999                      |
| 2. | J Hicks, 2000, Welded Design, Theory and Practice, Elsevier                                        |
| 3. | Gray T. G. E. 'Rational Welding Design', Butterworths, 1982                                        |
| 4. | Hertzberg R.W., 'Deformation and Fracture of Mechanics of Engineering Materials', John Wiley, 1996 |
| 5. | Dieter G., 'Mechanical Metallurgy', Tata McGraw Hill, 1988                                         |
| 6. | Bhattacharya, 'Weldment Design', Association of Engineers, 1991                                    |

#### **Course Outcomes (CO)**

| CO1 | Design weld joints for strength and rigidity under static loading conditions.                     |
|-----|---------------------------------------------------------------------------------------------------|
| CO2 | Design weld joints for dynamic loading and high temperature applications.                         |
| CO3 | Analyse and predict the life of weld joints subjected to fatigue and evaluate the effect ofstress |
|     | concentration on fatigue life of such joints.                                                     |
| CO4 | Estimate the ductile to brittle transition temperatures based on fracture toughness testing and   |
|     | understand the LEFM and EPFM concepts in Fracture Mechanics to propose solutions for              |
|     | improvements to fatigue life.                                                                     |
| CO5 | Identify the various types of stresses and distortions to a component during welding andtakes     |
|     | measures to minimize or eliminate such effects.                                                   |



| Course<br>Code | Course<br>Title        | СО  | Course outcomes At the end of the course, students will be able                                                                                                                                                   | PO1 | PO2 | PO3 |
|----------------|------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| MT601          | Design Of<br>Weldments | CO1 | Design weld joints for strength and rigidity under static loading conditions.                                                                                                                                     | Н   | M   | Н   |
|                |                        | CO2 | Design weld joints for dynamic loading and high temperature applications.                                                                                                                                         | Н   | L   | Н   |
|                |                        | CO3 | Analyse and predict the life of weld joints subjected to fatigue and evaluate the effect of stress concentration on fatigue life of such joints.                                                                  | Н   | L   | Н   |
|                |                        | CO4 | Estimate the ductile to brittle transition temperatures based on fracture toughness testing andunderstand the LEFM and EPFM concepts in Fracture Mechanics to propose solutions for improvements to fatigue life. | Н   | L   | Н   |
|                |                        | CO5 | Identify the various types of stresses and distortions to a component during welding and takes measures to minimize or eliminate such effects.                                                                    | Н   | M   | Н   |



| Course Code          | : | MT603                                 |
|----------------------|---|---------------------------------------|
| Course Title         | : | Joining of Materials - I              |
| Type of Course       | : | PC                                    |
| Prerequisites        | : | NIL                                   |
| <b>Contact Hours</b> | : | 4 (3 L, 1 T)                          |
| Course Assessmen     | : | Continuous Assessment, End Assessment |
| Methods              |   |                                       |

| CLO1 | Understand working principles of the various manual and automated fusion welding   |
|------|------------------------------------------------------------------------------------|
|      | processes.                                                                         |
| CLO2 | Gain knowledge of the concepts, operating procedures, applications, advantages and |
|      | limitations of various welding processes                                           |

#### **Course Content**

- Arc Physics, Power Sources, Manual metal arc welding: Concepts, types of electrodes and their applications, Gas tungsten arc welding: Concepts, processes, and applications; gas metal arc welding, Concepts, processes and applications, types of metal transfer, CO2 welding, pulsed and synergic MIG welding, FCAW.
- Submerged arc welding, advantages and limitations, process variables and their effects, significance of flux-metal combination, modern developments, narrow gap submerged arc welding, applications; electro slag and electro gas welding.
- Plasma welding; Concepts, processes and applications, keyhole and puddle-in mode of operation, low current and high current plasma arc welding and their applications; Magnetically impelled arc butt (MIAB) welding.
- Resistance welding, Concepts, types and applications, Flash butt welding, Stud welding and under water welding.

#### References

| 1. | Parmer R. S., 'Welding Engineering and Technology', Khanna Publishers, 1997         |
|----|-------------------------------------------------------------------------------------|
| 2. | Cary, Howard, "Modern Welding Technology", prentice Hall, 1998                      |
| 3. | John Norrish, Advanced welding processes Technologies and process control, Woodhead |
|    | Publishing Limited, 2006                                                            |

#### **Course Outcomes (CO)**

| CO1             | Understand working principle of various welding processes.                              |  |  |  |  |
|-----------------|-----------------------------------------------------------------------------------------|--|--|--|--|
| CO <sub>2</sub> | Select appropriate power source, fluxes, and shielding gases according to the materials |  |  |  |  |
|                 | to join and the applications.                                                           |  |  |  |  |
| CO3             | Correlation of welding parameters with the various factors.                             |  |  |  |  |
| CO4             | Explain the advantages, limitations and practical applications of various processes.    |  |  |  |  |



| Course<br>Code | Course Title                | СО  | Course outcomes At the end of the course, students will be able                                                               | PO1 | PO2 | PO3 |
|----------------|-----------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| MT603          | Joining of<br>Materials – I | CO1 | Understand working principle of various welding processes.                                                                    | Н   | L   | Н   |
|                |                             | CO2 | Select appropriate power source,<br>fluxes, and shielding gases<br>according to the materials to join<br>and the applications | Н   | M   | Н   |
|                |                             | CO3 | Correlation of welding parameters with the various factors.                                                                   | Н   | M   | Н   |
|                |                             | CO4 | Explain the advantages, limitations and practical applications of various processes.                                          | Н   | M   | Н   |



| Course Code          | : | MT609                                                 |
|----------------------|---|-------------------------------------------------------|
| Course Title         |   | Metallography, Materials Testing and Characterization |
|                      |   | Laboratory                                            |
| Type of Course       | : | Laboratory                                            |
| Prerequisites        | : | NIL                                                   |
| <b>Contact Hours</b> | : | 3                                                     |
| Course Assessment    | : | Continuous Assessment, End Assessment.                |
| Methods              |   |                                                       |

| CLO1 | To learn the principles of material testing and characterization and to apply them for |
|------|----------------------------------------------------------------------------------------|
|      | various engineering applications.                                                      |

# **LIST OF EXPERIMENTS:**

- 1. Study of metallurgical microscope and sample preparation
- 2. Microscopic examination of ferrous alloys (plain carbon steels, stainless steels, maraging steels and tool steels and cast irons).
- 3. Microscopic examination of non-ferrous materials (Magnesium alloys, Aluminum alloys, Titanium alloys, Copper alloys, Super alloys).
- 4. Tensile Testing using Hounsfield and UTM
- 5. Hardness Measurements (Rockwell, Vickers and Brinell)
- 6. Impact Testing (Izod and Charpy)
- 7. Determination of crystal structure and lattice parameters from XRD data
- 8. Crystallite size determination of materials using XRD.
- 9. Fractography using scanning electron microscope.
- 10. Chemical Composition analysis using spectroscopy.

#### **Course Outcomes (CO)**

| CO1             | Prepare the specimens for metallographic examination with best practice, can operate  |  |  |  |  |  |  |
|-----------------|---------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                 | the optical microscope and understand, interpret, analyse the microstructure of       |  |  |  |  |  |  |
|                 | materials.                                                                            |  |  |  |  |  |  |
| CO <sub>2</sub> | Classify the different mechanical testing methods with their inherent merits and      |  |  |  |  |  |  |
|                 | limitations.                                                                          |  |  |  |  |  |  |
| CO3             | Apply various test methods for characterizing physical properties of                  |  |  |  |  |  |  |
|                 | materials                                                                             |  |  |  |  |  |  |
| CO4             | Recommend materials testing techniques based upon desired results, perform basic      |  |  |  |  |  |  |
|                 | statistical analysis on data, and summarily present test results in a concise written |  |  |  |  |  |  |
|                 | format.                                                                               |  |  |  |  |  |  |



| Course<br>Code | Course Title                                                      | CO  | Course outcomes At the end of the course, students will be able                                                                                                                 | PO1 | PO2 | PO3 |
|----------------|-------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| MT609          | Metallography, Materials testing, and Characterization Laboratory | CO1 | Prepare the specimens for metallographic examination with best practice, can operate the optical microscope and understand, interpret, analyze the microstructure of materials. | Н   | Н   | M   |
|                |                                                                   | CO2 | Classify the different mechanical testing methods with their inherent merits and limitations.                                                                                   | Н   | Н   | M   |
|                |                                                                   | CO3 | Apply various test methods for characterizing physical properties of materials                                                                                                  | Н   | Н   | M   |
|                |                                                                   | CO4 | Recommend materials testing techniques based upon desired results, perform basic statistical analysis on data, and summarily present test results in a concise written format.  | Н   | Н   | Н   |



| Course Code          | : | MT602                                 |
|----------------------|---|---------------------------------------|
| Course Title         | : | Welding Metallurgy                    |
| Type of Course       | : | PC                                    |
| Prerequisites        | : | NIL                                   |
| <b>Contact Hours</b> | : | 4 (3 L, 1 T)                          |
| Course Assessment    | : | Continuous Assessment, End Assessment |
| Methods              |   |                                       |

| CLO1 | To gain understanding of heat flow and temperature distribution on weld components based  |  |  |  |  |  |  |  |
|------|-------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|      | on weld geometry                                                                          |  |  |  |  |  |  |  |
| CLO2 | To understand the solidification structure, growth morphology and formation of            |  |  |  |  |  |  |  |
|      | microstructures of weld and Heat Affected Zone (HAZ).                                     |  |  |  |  |  |  |  |
| CLO3 | Learn the weldability of ferrous and non-ferrous materials                                |  |  |  |  |  |  |  |
| CLO4 | Understand the various weld cracking mechanisms and learn the various weldability testing |  |  |  |  |  |  |  |
|      | methods                                                                                   |  |  |  |  |  |  |  |

#### **Course Content**

- Heat flow temperature distribution-cooling rates influence of heat input, joint geometry, plate thickness, preheat, significance of thermal severity number.
- Epitaxial growth weld metal solidification columnar structures and growth morphologyeffect of welding parameters - absorption of gases - gas/metal and slag/metal reactions
- Phase transformations- weld CCT diagrams carbon equivalent-preheating and post heating- weldability of low alloy steels, welding of stainless steels use of Schaffler and Delong diagrams, welding of cast irons
- Welding of Cu, Al, Ti, and Ni alloys processes, difficulties, microstructures, defects, and remedial measures
- Origin types process induced defects, significance remedial measures, Hot cracking
   cold cracking -lamellar tearing reheat cracking weldability tests effect of metallurgical parameters.

#### References

| 1. | Sindo kou, "Welding Metallurgy", John Wiley & Sons, 2003                                         |
|----|--------------------------------------------------------------------------------------------------|
| 2. | Linnert G. E., 'Welding Metallurgy', Volume I and II, 4th Edition, AWS, 1994                     |
| 3. | Robert W Messler Jr, Principles of Welding, Processes, Physics, Chemistry and Metallurgy, Wiley- |
|    | VCH, 2004.                                                                                       |
| 4. | Granjon H., 'Fundamentals of Welding Metallurgy', Jaico Publishing House, 1994                   |
| 5. | Kenneth Easterling, 'Introduction to Physical Metallurgy of Welding', 2nd Edition, Butterworth   |
|    | Heinmann, 1992                                                                                   |

#### **Course Outcomes (CO)**

| CO1 | Explain the influence of heat input and temperature distribution across a welded structure based  |
|-----|---------------------------------------------------------------------------------------------------|
|     | on weld geometry.                                                                                 |
| CO2 | Correlate the solidification behaviour and solidification structure of weld zone with the welding |
|     | parameters.                                                                                       |
| CO3 | Analyse and predict the weldability of various ferrous and nonferrous materials.                  |
| CO4 | Identify the origin and types of process induced defects and conduct weldability tests.           |



| Course<br>Code | Course<br>Title       | СО  | Course outcomes At the end of the course, students will be able                                                      | PO1 | PO2 | PO3 |
|----------------|-----------------------|-----|----------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| MT602          | Welding<br>Metallurgy | CO1 | Explain the influence of heat input and temperature distribution across a welded structure based on welded geometry. | Н   | M   | Н   |
|                |                       | CO2 | Correlate the solidification behaviour and solidification structure of weld zone with the welding parameters.        | Н   | M   | Н   |
|                |                       | CO3 | Analyse and predict the weldability of various ferrous and nonferrous materials.                                     | Н   | M   | Н   |
|                |                       | CO4 | Identify the origin and types of process induced defects and conduct weldability tests.                              | Н   | M   | Н   |



| Course Code          | : | MT604                                 |
|----------------------|---|---------------------------------------|
| Course Title         | : | Welding Codes and Standards           |
| Type of Course       | : | PC                                    |
| Prerequisites        | : | NIL                                   |
| <b>Contact Hours</b> | : | 4 (3 L, 1 T)                          |
| Course Assessment    | : | Continuous Assessment, End Assessment |
| Methods              |   |                                       |

| CLO1 | Understand the various codes and standards on welding applications.     |  |  |  |
|------|-------------------------------------------------------------------------|--|--|--|
| CLO2 | Gain knowledge to apply a specific code for a given welding application |  |  |  |

#### **Course Content**

- Design requirements, allowable stress values, workmanship and inspection, introduction to welding codes and standards, AWS D1.1
- Process and product standards for manufacturing of pipe welding procedure and welder qualification, field welding and inspection, API 1104 and API5L
- Design requirements, fabrication methods, joint categories, welding and inspection, post weld heat treatment and hydro testing, ASME II -C, V, VIII and IX
- Welding procedure specification, procedure qualification records, performance qualification, variables
- Introduction to materials standards and testing of materials, consumables testing and qualification as per ASME/AWS requirements.

#### References

| 1. | AWS D1.1 Structural Welding Code |  |  |  |
|----|----------------------------------|--|--|--|
| 2. | API 5L                           |  |  |  |
| 3. | API 1104                         |  |  |  |
| 4. | ASME Section VIII - Division 1   |  |  |  |
| 5. | ASME Section IX                  |  |  |  |
| 6. | ASME Section II Part A and C     |  |  |  |

# **Course Outcomes (CO)**

| CO1             | Identify various design requirements and applicability of AWS D 1.1.                 |  |  |  |
|-----------------|--------------------------------------------------------------------------------------|--|--|--|
| CO <sub>2</sub> | Apply API 1104 and AP15L for pipe welding applications.                              |  |  |  |
| CO <sub>3</sub> | Apply ASME II, V, VIII and IX for boiler fabrication.                                |  |  |  |
| CO4             | Understand and apply WPS, PQR and performance qualification variables for a specific |  |  |  |
|                 | welding application.                                                                 |  |  |  |
| CO5             | Understand different materials standard, testing methods and consumable testing.     |  |  |  |
|                 |                                                                                      |  |  |  |



| Course<br>Code | Course<br>Title      | СО  | Course outcomes At the end of the course, students will be able                                           | PO1 | PO2 | PO3 |
|----------------|----------------------|-----|-----------------------------------------------------------------------------------------------------------|-----|-----|-----|
| MT604          | Welding<br>Codes and | CO1 | Identify various design requirements and applicability of AWS D 1.1.                                      | L   | Н   | Н   |
|                | Standards            | CO2 | Apply API 1104 and AP15L for pipe welding applications.                                                   | L   | Н   | Н   |
|                |                      | CO3 | Apply ASME II, V, VIII and IX for boiler fabrication.                                                     | L   | Н   | Н   |
|                |                      | CO4 | Understand and apply WPS, PQR and performance qualification variables for a specific welding application. | M   | Н   | Н   |
|                |                      | CO5 | Understand different materials standard, testing methods and consumable testing.                          | M   | Н   | Н   |



| <b>Course Code</b>   |            | : | MT606                                 |
|----------------------|------------|---|---------------------------------------|
| <b>Course Title</b>  |            | : | Joining of Materials - II             |
| Type of Course       |            | : | PC                                    |
| Prerequisites        |            | : | NIL                                   |
| <b>Contact Hours</b> |            | : | 4 (3 L, 1 T)                          |
| Course               | Assessment | : | Continuous Assessment, End Assessment |
| Methods              |            |   |                                       |

| CLO1 | Understand the various manual and automated welding processes available.           |
|------|------------------------------------------------------------------------------------|
|      | Gain knowledge of the concepts, operating procedures, applications, advantages and |
|      | limitations of various solid-state welding processes                               |

#### **Course Content**

- Friction welding: Concepts, types, and applications. Friction stirs welding: Metal flow phenomena, tools, process variables and applications and induction pressure welding: Process characteristics and applications.
- Explosive, diffusion and ultrasonic welding, principles of operation, process characteristics and applications
- EBW: Concepts, types, and applications. LBW: Physics of lasers, types of lasers, operation of laser welding setup, advantages and limitations, applications
- Soldering: Techniques of soldering, solders, phase diagram, composition, applications Brazing: Wetting and spreading characteristics, surface tension and contact angle concepts, brazing fillers, role of flux and characteristics, atmospheres for brazing, adhesive bonding
- Cladding, Surfacing and Cutting, Hybrid welding, Automation and Robotics in welding.

#### References

| 1. | Nadkarni S.V., 'Modern Arc Welding Technology', Oxford IBH Publishers, 1996          |
|----|--------------------------------------------------------------------------------------|
| 2. | David H. Phillips, 2023, Welding Engineering: An Introduction John Wiley & Sons      |
|    | publication                                                                          |
| 3. | Christopher Davis, 'Laser Welding - A Practical Guide', Jaico Publishing House, 1994 |
| 4. | Parmar R S, Welding Engineering and Technology, Khanna Publishers, 1997              |
| 5. | Mishra. R.S and Mahoney. M.W, Friction Stir Welding and Processing, ASM,2007         |

#### **Course Outcomes (CO)**

| CO1             | Explain the principle of friction welding and its variants.                          |  |  |  |  |  |  |
|-----------------|--------------------------------------------------------------------------------------|--|--|--|--|--|--|
| CO <sub>2</sub> | Explain the process, advantages, limitations and practical applications of explosive |  |  |  |  |  |  |
|                 | welding, electron beam welding and laser welding.                                    |  |  |  |  |  |  |
| CO3             | Explain the concepts, various operating procedures and applications of soldering and |  |  |  |  |  |  |
|                 | brazing.                                                                             |  |  |  |  |  |  |
| CO4             | Explain the concepts and applications of various types of cladding, surfacing and    |  |  |  |  |  |  |
|                 | cutting.                                                                             |  |  |  |  |  |  |



| Course<br>Code | Course Title                 | CO  | Course outcomes At the end of the course, students will be able                                                                        | PO1 | PO2 | PO3 |
|----------------|------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| MT606          | Joining of<br>Materials - II | CO1 | Explain the principle of friction welding and its variants.                                                                            | Н   | M   | Н   |
|                |                              | CO2 | Explain the process, advantages, limitations and practical applications of explosive welding, electron beam welding and laser welding. | Н   | M   | Н   |
|                |                              | CO3 | Explain the concepts, various operating procedures and applications of soldering and brazing.                                          | Н   | M   | Н   |
|                |                              | CO4 | Explain the concepts and applications of various types of cladding, surfacing andcutting.                                              | Н   | M   | Н   |



| Course Code           | :     | MT610                                 |
|-----------------------|-------|---------------------------------------|
| <b>Course Title</b>   | :     | Welding Laboratory                    |
| <b>Type of Course</b> | :     | Laboratory                            |
| Prerequisites         | :     | Nil                                   |
| <b>Contact Hours</b>  | :     | 3                                     |
| Course Assessm        | ent : | Continuous Assessment, End Assessment |
| Methods               |       |                                       |

| CLO1 | To gain knowledge on practical aspects of different welding processes and able |
|------|--------------------------------------------------------------------------------|
|      | to apply them for various engineering applications.                            |

#### LIST OF EXPERIMENTS

- 1. Arc striking practice.
- 2. Bead-on-plate welding.
- 3. Wire arc additive manufacturing using CMT.
- 4. Effect of welding parameters on weld bead by
  - ➤ GTA welding
  - ➤ GMA welding
  - > Submerged arc welding
- 5. Microstructural observation of weldments
  - > Carbon steel
  - > Stainless steel
  - ➤ Aluminum alloy
  - > Titanium alloy
  - Dissimilar joints
- 6. Practice for preparation of welding procedure specification.
- 7. Practice for preparation of procedure qualification record.

#### **Course Outcomes (CO)**

| CO1 | Gain knowledge in practical aspects of MMAW, GTAW, GMAW and SAW.                                      |
|-----|-------------------------------------------------------------------------------------------------------|
| CO2 | Gain knowledge on welding of carbon steel, stainless steel, aluminium, titaniumand dissimilar joints. |
| CO3 | Able to write WPS and PQR for MMAW and GTAW                                                           |

| Course | Course     | CO  | Course outcomes                                 | PO1 | PO2 | PO3 |
|--------|------------|-----|-------------------------------------------------|-----|-----|-----|
| Code   | Title      |     | At the end of the course, students will be able |     |     |     |
| MT610  | Welding    | CO1 | Gain knowledge in practical aspects of          | Н   | M   | Н   |
|        | Laboratory | COI | MMAW, GTAW, GMAW and SAW.                       |     |     |     |
|        |            | CO2 | Gain knowledge on welding of carbon             | Н   | M   | Н   |
|        |            | CO2 | steel, stainless steel, aluminium,              |     |     |     |
|        |            |     | titaniumand dissimilar joints.                  |     |     |     |
|        |            | CO3 | Able to write WPS and PQR for                   | Н   | M   | Н   |
|        |            |     | MMAW and GTAW.                                  |     |     |     |



| Course Code           | :      | MT613                                 |
|-----------------------|--------|---------------------------------------|
| Course Title          | :      | Project Work Phase –I                 |
| <b>Type of Course</b> | :      | Project Work                          |
| Prerequisites         | :      |                                       |
| <b>Contact Hours</b>  | :      |                                       |
| Course Assessr        | nent : | Continuous Assessment, End Assessment |
| Methods               |        |                                       |

| To know in depth exploration of a topic of special interest and to explain, applyrelevant theories and laws in the chosen area. |  |
|---------------------------------------------------------------------------------------------------------------------------------|--|
|---------------------------------------------------------------------------------------------------------------------------------|--|

# **Course Outcomes (CO)**

| CO1 | Interpret theories and doctrines and give recommendations where appropriate.             |
|-----|------------------------------------------------------------------------------------------|
|     | Knowledge on the chosen topic and apply the knowledge, experience, and skillslearned.    |
| CO2 | Produce a thesis of publishable quality. Effectively present and defend research orally. |
| CO3 | Interpret theories and doctrines and give recommendations where appropriate.             |
|     | Knowledge on the chosen topic and apply the knowledge, experience, and skillslearned.    |
| CO4 | Produce a thesis of publishable quality. Effectively present and defend research orally. |

| Course<br>Code | Course Title             | СО  | Course outcomes At the end of the course, students will be able                                                                                                     | PO1 | PO2 | PO3 |
|----------------|--------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| MT613          | Project work<br>Phase –I | CO1 | Interpret theories and doctrines and give recommendations where appropriate. Knowledge on the chosen topic and apply the knowledge, experience, and skills learned. | Н   | Н   | Н   |
|                |                          | CO2 | Produce a thesis of publishable quality. Effectively present and defend research orally.                                                                            | Н   | Н   | Н   |
|                |                          | CO3 | Interpret theories and doctrines and give recommendations where appropriate. Knowledge on the chosen topic and apply the knowledge, experience, and skills learned. | Н   | Н   | Н   |
|                |                          | CO4 | Produce a thesis of publishable quality. Effectively present and defend research orally.                                                                            | Н   | Н   | Н   |



| Course Code          |           | :  | MT614                                 |
|----------------------|-----------|----|---------------------------------------|
| Course Title         |           | :  | Project Work Phase –II                |
| Type of Course       |           | :  | Project Work                          |
| Prerequisites        |           | :  |                                       |
| <b>Contact Hours</b> |           | •• |                                       |
| Course As            | ssessment | •• | Continuous Assessment, End Assessment |
| Methods              |           |    |                                       |

| CLO1 | To know in depth exploration of a topic of special interest and to |
|------|--------------------------------------------------------------------|
|      | explain, applyrelevant theories and laws in the chosen area.       |

# **Course Outcomes (CO)**

| CO1 | Interpret theories and doctrines and give recommendations whereappropriate.           |
|-----|---------------------------------------------------------------------------------------|
| CO2 | Acquire knowledge on the chosen topic and apply the knowledge, experience, and skills |
|     | learned                                                                               |
| CO3 | Produce a thesis of publishable quality                                               |
| CO4 | Effectively present and defend research orally.                                       |
|     | · ·                                                                                   |

| Course<br>Code | Course Title              | СО  | Course outcomes At the end of the course, students will be able                               | PO1 | PO2 | PO3 |
|----------------|---------------------------|-----|-----------------------------------------------------------------------------------------------|-----|-----|-----|
| MT614          | Project work<br>Phase –II | CO1 | Interpret theories and doctrines and give recommendations where appropriate.                  | Н   | Н   | Н   |
|                |                           | CO2 | Acquire knowledge on the chosen topic and apply the knowledge, experience, and skills learned | Н   | Н   | Н   |
|                |                           | CO3 | Produce a thesis of publishable quality                                                       | Н   | Н   | Н   |
|                |                           | CO4 | Effectively present and defend research orally.                                               | Н   | Н   | Н   |



| Course Code                      | : | MT661                                 |
|----------------------------------|---|---------------------------------------|
| Course Title                     | : | Physical Metallurgy                   |
| Type of Course                   | : | PE                                    |
| Prerequisites                    | : | NIL                                   |
| <b>Contact Hours</b>             | : | 4                                     |
| <b>Course Assessment Methods</b> | : | Continuous Assessment, End Assessment |

| CLO1 | To develop an understanding of the basis of physical metallurgy and correlate |  |
|------|-------------------------------------------------------------------------------|--|
|      | structure of materials with their properties for engineering applications.    |  |

#### **Course Content**

- Introduction to structure (atomic structure, micro and macrostructure) and their importance to relate with properties and processing. Overview of engineering alloys and their applications. Details on transformations: Liquid to solid and Solid to solid transformation and their importance in fine tuning the properties of engineering alloy and processing
- Diffusion, energetic of solidification Nucleation and growth-dealing homogeneous and heterogeneous nucleation and growth of solids, dendritic growth in pure metals, constitutional super cooling, and dendritic growth in alloys.
- Phase diagrams solid solution –types, Hume –Rothery rule. Phase diagrams Binary- types Lever rule. Solidification of different types of solid solutions Iron-Carbon diagram Effect of alloying element on Iron- carbon diagram. Ternary phase diagrams- Understanding of isotherms and isopleths.
- Strengthening mechanisms strengthening by grain-size reduction, solid solution Strengthening, strain hardening, dispersion hardening and other recent modes of hardening. Heat treatment of ferrous alloys; Annealing, Normalizing, TTT and CCT diagrams, Hardening hardenability measurements, tempering. Thermo mechanical treatments. Heat treatment furnaces atmospheres quenching media case hardening techniques.
- Engineering alloys: Types, composition and processing and their structure -property correlation. Metallurgy of newer alloys (High entropy alloys, intermetallic compounds-Aluminides, Silicide, etc.)

#### References

| 1. | Avner, S. H., "Introduction to Physical Metallurgy", second edition, McGraw Hill, 1985.                                 |
|----|-------------------------------------------------------------------------------------------------------------------------|
| 2. | William F. Hosford, Physical Metallurgy, Taylor & Francis Group, 2008                                                   |
| 3. | Raghavan, V., "Physical Metallurgy", Prentice Hall of India, 1985                                                       |
| 4. | Donald R Askland and Pradeep P Phule "Essentials of Materials Science and Engineering, BabaBarkha Nath Printers, Delhi. |
| 5. | Willam D. Callister, Jr. Materials Science and Engineering, Wiley India Pvt. Ltd.                                       |
| 6. | Vijendra Singh, Physical Metallurgy, Standard Publishers.                                                               |

#### **Course Outcomes (CO)**

| CO1 | Understand the structures of various engineering alloys and relate to their properties and processing. |
|-----|--------------------------------------------------------------------------------------------------------|
| CO2 | Learn the transformation kinetics and apply in developing microstructure-controlled engineering alloys |
| CO3 | Design and scheduling of heat treatment process for various engineering in order to meet the           |
|     | industrial requirements.                                                                               |
| CO4 | Tailor the engineered alloy with the help suitable strengthening methods.                              |
| CO5 | Know the various newer alloys and their applications and suitably place in different engineering       |
|     | structures.                                                                                            |



| Course<br>Code | Course Title           | СО  | Course outcomes At the end of the course, students will be able                                                       | PO1 | PO2 | PO3 |
|----------------|------------------------|-----|-----------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| MT661          | Physical<br>Metallurgy | CO1 | Understand the structures of various engineering alloys and relate to their properties and processing.                | Н   | M   | Н   |
|                |                        | CO2 | Learn the transformation kinetics and apply in developing microstructure-controlled engineering alloys.               | Н   | M   | Н   |
|                |                        | CO3 | Design and scheduling of heat treatment process for various engineering in order to meet the industrial requirements. | Н   | M   | Н   |
|                |                        | CO4 | Tailor the engineered alloy with the help suitable strengthening methods.                                             | Н   | M   | Н   |
|                |                        | CO5 | Know the various newer alloys and their applications and suitably place in different engineering structures.          | Н   | M   | Н   |



| Course Code          |   | MT662                                    |
|----------------------|---|------------------------------------------|
| Course Title         |   | Testing, Inspection and Characterization |
| Type of Course       |   | PE                                       |
| Prerequisites        |   | NIL                                      |
| <b>Contact Hours</b> |   | 4                                        |
| Course Assessment    | : | Continuous Assessment, End Assessment    |
| Methods              |   |                                          |

| CLO1 | To provide an understanding of the basic principles of various testing, Inspection and |
|------|----------------------------------------------------------------------------------------|
|      | characterization tools and use those tools to analyze metallurgical components.        |

#### **Course Content**

Purpose and importance of destructive tests – Concepts, and method of Tensile, hardness, bend, torsion, fatigue, and creep testing; Adopting these testing methods as per standards and analysing the outcome of the testing.

Purpose and limitations of NDT, Concepts, operating principles, advantages, limitations of liquid penetrant testing and magnetic particle inspection, eddy current testing, ultrasonic testing, radiography. Comparison of NDT methods and selection of NDT methods. Identifying suitable method(s) and analysing the outcome of the testing.

Light optical microscopy, basic principles, and special techniques. X-ray diffraction and its applications in materials characterization. Identifying suitable method(s) and analysing the outcome of the testing.

Electron microscopy, Construction, operation, and applications of scanning electron microscope (SEM), transmission electron microscope (TEM) along with their attachments like energy dispersive spectroscopy, wavelength dispersive spectroscopy, electron back scattered diffraction. Analysis of the imaging and diffraction results; tomography.

Thermal analysis: Thermo gravimetric analysis, differential thermal analysis, differential scanning calorimetry and dilatometry.

#### References

| 1. | Suryanarayana A.V.K., 'Testing of Metallic Materials', 2nd edition, B S Publications, 2018 |
|----|--------------------------------------------------------------------------------------------|
| 2. | Non-destructive testing, B. Hull and V. John, Macmillan, 1988.                             |
| 3. | Modern Physical Metallurgy and Materials Engineering, R. E. Smallman, R. J. Bishop, sixth  |
|    | edition, Butterworth-Heinemann, 1999.                                                      |
| 4. | Materials Characterisation, P.C. Angelo, Elsevier (India) Pvt. Ltd, Haryana, 2013,         |

#### **Course Outcomes (CO)**

| CO1             | Know various destructive testing methods of materials and analysing its results.     |
|-----------------|--------------------------------------------------------------------------------------|
| CO <sub>2</sub> | Know various non-destructive testing methods of materials and analysing its results. |
| CO <sub>3</sub> | Understanding the basic characterization techniques like OM and XRD and also         |
|                 | understanding which technique can be used in a specific requirement.                 |
| CO4             | Understanding the advanced microscopic characterization techniques SEM, TEM,         |
|                 | EBSD and also understanding which technique can be used in a specific requirement.   |
| CO5             | Evaluate the specimen by thermal analysis and dilatometry.                           |
|                 |                                                                                      |
|                 |                                                                                      |



| Course<br>Code | Course Title                              | СО  | Course outcomes At the end of the course, students will be able                                                                                                 | PO1 | PO2 | PO3 |
|----------------|-------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| MT662          | Testing, Inspection, and Characterization | CO1 | Know various destructive testing methods of materials and analyzing its results.                                                                                | M   | Н   | Н   |
|                |                                           | CO2 | Know various non-destructive testing methods of materials and analysing its results.                                                                            | M   | Н   | M   |
|                |                                           | CO3 | Understanding the basic characterization techniques like OM and XRD and also understanding which technique can be used in a specific requirement.               | Н   | Н   | Н   |
|                |                                           | CO4 | Understanding the advanced microscopic characterization techniques SEM, TEM, EBSD and also understanding which technique can be used in a specific requirement. | Н   | Н   | Н   |
|                |                                           | CO5 | Evaluate the specimen by thermal analysis and dilatometry.                                                                                                      | Н   | Н   | Н   |



| Course Code                      | : | MT663                                 |
|----------------------------------|---|---------------------------------------|
| Course Title                     | : | Mechanical Behaviour of Materials     |
| Type of Course                   | : | PE                                    |
| Prerequisites                    | : | NIL                                   |
| <b>Contact Hours</b>             | : | 3                                     |
| <b>Course Assessment Methods</b> | : | Continuous Assessment, End Assessment |

| CLO1 | To understand the concepts on materials failure and fracture analysis of materials |
|------|------------------------------------------------------------------------------------|
|      | and to design new materials that can with stand catastrophic failures at different |
|      | environment.                                                                       |

#### **Course Content**

- Definition of stress, strain, transformation of coordinate systems, tensor notations, relationship between stress and strain in elastic materials, concept of principal stress and principal strain, stress invariants, modulus, Hook's law and understanding of stiffness and compliance tensors, elastic anisotropy,
- Yield criteria, equivalent stress and plastic strain, Theoretical shear of perfect crystal, Mohs circle, concept of dislocations and dislocation theory, edge and screw dislocations, dislocation interactions, kink, and jog, sessile and glissiles, partial dislocations, dissociation of dislocations, Thomson tetrahedral, Lomer-Cottrell barriers.
- Strengthening mechanisms, work hardening, solid solution strengthening, grain boundary strengthening, particle hardening, polymer elasticity and viscoelasticity, types of reinforcements and their influence, types of composites, high temperature degradation, creep and stress rupture, deformation mechanism maps, super plasticity and hot working.
- Hardness, types of hardness measurements, comparison among hardness methods and scales, nanoindentation, compression testing, comparison between tension and compression studies of materials, shear testing, shear modulus, torsion, and twist.
- Fatigue of materials, S-N curves, life data presentation, influence of stress, linear elastic fracture mechanics in fatigue, crack growth studies, Paris law, metallurgical aspects of fatigue failures, concepts of remedial measures, creep-fatigue interaction, theoretical strength, Griffith equation, Brittle fracture, ductile fracture, fracture maps.

#### References

| 1. | Dieter G. E., 'Mechanical Metallurgy', 3 <sup>rd.</sup> Edition, McGraw Hill, 1988                                                                                                                 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | Suryanarayana, 'Testing of Metallic Materials', Prentice Hall India, 1979.                                                                                                                         |
| 3. | Rose R. M., Shepard L. A., Wulff J., 'Structure and Properties of Materials', Volume III, 4 <sup>th</sup> Edition, John Wiley,1984                                                                 |
| 4. | Thomas H. Courtney, "Mechanical Behaviour of Materials", 2nd Edition, 2013, Overseas Press India PrivateLimited, ISBN: 81-88689-69-6                                                               |
| 5. | Norman E. Dowling, "Mechanical Behaviour of Materials", International Edition (4th), Contributed by K.Siva Prasad and R. Narayanasamy, 2013, Pearson Education Limited. ISBN: 13:978-0-273-76455-7 |

#### **Course Outcomes (CO)**

| 001 |                                                                                     |
|-----|-------------------------------------------------------------------------------------|
| CO1 | Understand the relationship between stress and strain.                              |
| CO2 | Understand the yielding behaviour and dislocation influence on plastic deformation. |
| CO3 | Understand the various strengthening mechanisms and high temperature deformation.   |
| CO4 | Understand testing methods like hardness, compression, and fatigue.                 |



| Course<br>Code | Course Title               | СО            | Course outcomes At the end of the course, students will be able                     | PO1 | PO2 | PO3 |
|----------------|----------------------------|---------------|-------------------------------------------------------------------------------------|-----|-----|-----|
| MT663          | Mechanical<br>Behaviors of | CO1           | Understand the relationship between stress and strain.                              | Н   | L   | Н   |
|                | Materials                  | Materials CO2 | Understand the yielding behaviour and dislocation influence on plastic deformation. | Н   | L   | M   |
|                |                            | CO3           | Understand the various strengthening mechanisms and high temperature deformation.   | Н   | L   | Н   |
|                |                            | CO4           | Understand testing methods like hardness, compression, and fatigue.                 | Н   | L   | M   |



| Course Code          | : | MT664                                 |
|----------------------|---|---------------------------------------|
| Course Title         | : | Corrosion Engineering                 |
| Type of Course       | : | PE                                    |
| Prerequisites        | : | NIL                                   |
| <b>Contact Hours</b> | : | 3                                     |
| Course Assessment    | : | Continuous Assessment, End Assessment |
| Methods              |   |                                       |

| CLO1 | To provide a practical knowledge about corrosion and its prevention in engineering |
|------|------------------------------------------------------------------------------------|
|      | field.                                                                             |

#### **Course Content**

- Principles of corrosion phenomenon: Thermodynamics and kinetics: emf/galvanic series, Pourbaix diagram, exchange current density, passivity, Evan's diagram, Flade potential.
- Different forms of corrosion: atmospheric/uniform, pitting crevice, intergranular, stress corrosion, corrosion fatigue, dealloying, high temperature oxidation-origin and mechanism with specific examples.
- Corrosion testing and monitoring: Non-Electro chemical and Electrochemical methods: weight loss method, Tafel Linear polarization and Impedance techniques, Lab, semi plant & field tests, susceptibility test.
- Corrosion prevention through design, coatings, inhibitors, cathodic, anodic protection, specific applications, economics of corrosion control.
- Corrosion & its control in industries: Power, Process, Petrochemical, ship building, marine and fertilizer industries. Some case studies-Corrosion and its control in different engineering materials: concrete structures, duplex, super duplex stainless steels, ceramics, composites, and polymers. Corrosion auditing in industries, Corrosion map of India.

#### References

| 1. | Fontana. M.G., Corrosion Engineering, Tata McGraw Hill, 3 <sup>rd</sup> Edition, 2005.            |
|----|---------------------------------------------------------------------------------------------------|
| 2. | Jones. D.A. Principles and Prevention of Corrosion, 2 <sup>nd</sup> Edition, Prentice Hall, 1996. |

#### **Course Outcomes (CO)**

| CO1 | Do electro and electroless plating of Cu, Al alloys.                                     |
|-----|------------------------------------------------------------------------------------------|
| CO2 | Determine the corrosion rate by weight loss method, electrical resistance method,        |
|     | potentionstatic polarization experiment and atmospheric corrosion using colour           |
|     | indicator method.                                                                        |
| CO3 | Analyse galvanic corrosion, pitting corrosion and stress corrosion cracking.             |
| CO4 | Estimate the corrosion resistance by IGC susceptibility test, salt spray testand coating |
|     | thickness.                                                                               |



| Course<br>Code | Course Title             | СО                                                                                                                                                                                 | Course outcomes At the end of the course, students will be able                                     | PO1 | PO2 | PO3 |
|----------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----|-----|-----|
| MT664          | Corrosion<br>Engineering | CO1                                                                                                                                                                                | Do electro and electroless plating of Cu, Al alloys.                                                | Н   | L   | Н   |
|                | CO2                      | Determine the corrosion rate by weight loss method, electrical resistance method, potentionstatic polarization experiment and atmospheric corrosion using colour indicator method. | M                                                                                                   | Н   | M   |     |
|                |                          | CO3                                                                                                                                                                                | Analyse galvanic corrosion, pitting corrosion and stress corrosion cracking                         | Н   | M   | Н   |
|                |                          | CO4                                                                                                                                                                                | Estimate the corrosion resistance by IGC susceptibility test, salt spray testand coating thickness. | Н   | Н   | Н   |



| Course Code          | : | MT665                                 |
|----------------------|---|---------------------------------------|
| Course Title         | : | Computational Techniques              |
| Type of Course       | : | PE                                    |
| Prerequisites        | : | NIL                                   |
| <b>Contact Hours</b> | : | 3                                     |
| Course Assessmen     | : | Continuous Assessment, End Assessment |
| Methods              |   |                                       |

| CLO1 | To become familiar with experimental design and analysis of variance                          |
|------|-----------------------------------------------------------------------------------------------|
| CLO2 | To understand finite difference method to solve complex heat transfer problems                |
| CLO3 | To learn the finite element method to simulate various manufacturing processes                |
| CLO4 | To learn the basics of machine learning techniques and how to use it in materials engineering |

#### **Course Content**

- Computational Techniques: Introduction, importance, applications; Various techniques, Modelling and simulation, Introduction to ICME (Integrated computational materials engineering)
- Design of Experiments: Introduction, Basic Concepts, Analysis of Variance (ANOVA), Factorial Design, Taguchi, Response Surface Methodology
- Finite Difference Method: Introduction, Mathematical formulation, Solving steady state and transient one dimensional and two-dimensional heat transfer problems
- Finite Element Method: Introduction, fundamentals, applications; solving heat transfer and fluid flow problems. Simulation of manufacturing processes.
- Machine learning: Introduction, fundamentals, supervised learning classification and regression, unsupervised learning, semi-supervised learning; usage of machine learning techniques in materials engineering

#### References

| 1. | Jiju Antony, Design of Experiments for Engineers and Scientists, 3rd Edition, Elsevier, 2023.         |
|----|-------------------------------------------------------------------------------------------------------|
| 2. | Douglas C. Montgomery, Design and Analysis of Experiments, 8th edition, John Wiley & Sons, Inc., 2012 |
| 3. | S.V. Patankar, Numerical Heat Transfer and Fluid Flow, CRC Press, 2009.                               |
| 4. | Tirupathi Chandrupatla, Ashok Belegundu, Introduction to Finite Elements in Engineering, 5th Edition, |
|    | Cambridge University Press, 2022.                                                                     |
| 5. | John D. Kelleher, Brian Mac Namee, and Aoife D'Arcy, Fundamentals of Machine Learning for Predictive  |
|    | Data Analytics, 2nd edition, MIT Press, 2022                                                          |

# **Course Outcomes (CO)**

| CO1 | To choose a suitable computational technique for solving different engineering          |
|-----|-----------------------------------------------------------------------------------------|
|     | problems.                                                                               |
| CO2 | To use analysis of variance and design of experiments for any engineering applications. |
| CO3 | To solve heat transfer problems using finite difference method.                         |
| CO4 | To perform manufacturing simulations using finite element method.                       |
| CO5 | To identify the suitable machine learning techniques for solving materials engineering  |
|     | related problems.                                                                       |



| Course<br>Code | Course Title             | СО  | Course outcomes At the end of the course, students will be able                                          | PO1 | PO2 | PO3 |
|----------------|--------------------------|-----|----------------------------------------------------------------------------------------------------------|-----|-----|-----|
| MT665          | Computational Techniques | CO1 | To choose a suitable computational technique for solving different engineering problems.                 | Н   | M   | Н   |
|                |                          | CO2 | To use analysis of variance and design of experiments for any engineering applications.                  | Н   | M   | Н   |
|                |                          | CO3 | To solve heat transfer problems using finite difference method.                                          | Н   | M   | Н   |
|                |                          | CO4 | To perform manufacturing simulations using finite element method.                                        | Н   | M   | Н   |
|                |                          | CO5 | To identify the suitable machine learning techniques for solving materials engineering related problems. | Н   | M   | Н   |



| Course Code          | :   | MT666                                 |
|----------------------|-----|---------------------------------------|
| Course Title         | :   | Metallurgical Failure Analysis        |
| Type of Course       | :   | PE                                    |
| Prerequisites        | :   | NIL                                   |
| <b>Contact Hours</b> | :   | 3                                     |
| Course Assessmen     | t : | Continuous Assessment, End Assessment |
| Methods              |     |                                       |

| CLO1 | To understand the concepts on materials failure and fracture analysis of materials and |
|------|----------------------------------------------------------------------------------------|
|      | to design new materials that can with stand catastrophic failures at different         |
|      | environment.                                                                           |

#### **Course Content**

- Aims of failure analysis, general procedures of failure analysis. Important factors causing
  the premature failure of metallic components and structures., classification of failure
  sources: Design deficiencies, material deficiencies, processing deficiencies, assembly
  errors, service conditions, neglect and improper operation. Methods and equipment for
  failure analysis, Sample selection and treatment, equipment for materials examination,
  materials analysis equipment for failure analysis, commonly used NDT methods.
- Fractography. Types of failures: ductile, brittle, fatigue, creep, corrosion, wear. Fatigue
  failures, fractography, effect of variables: part shape, type of loading, stress concentration,
  metallurgical factors, etc. Wear failures, adhesive, abrasive, erosive, corrosive wear.
  Corrosion failures, types of corrosion: uniform, pitting, selective leaching, intergranular,
  crevice, etc. Elevated temperature failures, creep, thermal fatigue, microstructural
  instability, oxidation.
- Failure mechanisms. Embrittlement phenomena. Environmental effects.
- Failures due to faulty heat treatments. Failures in metal forming and welding.
- Case studies in failure analysis and prevention of failures.

#### References

| 1. | Failure Analysis of Engineering Materials, 1st Edition - Charles R. Brooks, Ashok Choudhury, |
|----|----------------------------------------------------------------------------------------------|
|    | published by Mc Graw-Hill Professional, 2001.                                                |
| 2. | Metallurgical Failure Analysis: Techniques and Case Studies, 1st Edition Kannadi Palankeezhe |
|    | Balan, published by Elsevier, 2018.                                                          |
| 3. | Failure Analysis: Fundamentals and Applications in Mechanical Components - Jose Luis         |

#### **Course Outcomes (CO)**

| CO1 | The ability to identify the types of failures in engineering components under service. |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------|--|--|--|--|--|
| CO2 | Able to determine fracture toughness of ductile and brittle materials.                 |  |  |  |  |  |
| CO3 | Knowledge of the tools and techniques to perform failure analysis. Ability to perform  |  |  |  |  |  |
|     | fractographic analysis after various failures.                                         |  |  |  |  |  |
| CO4 | Ability to perform fractographic analysis after various failures.                      |  |  |  |  |  |
| CO5 | The ability to identify different failure mechanisms resulting from manufacturing      |  |  |  |  |  |
|     | Processes.                                                                             |  |  |  |  |  |
| CO6 | Able to analyze the failures with the help of case studies and suggest prevention      |  |  |  |  |  |
|     | methods for failure.                                                                   |  |  |  |  |  |



| Course<br>Code | Course Title | СО  | Course outcomes At the end of the course, students will be able                                                                      | PO1 | PO2 | PO3 |
|----------------|--------------|-----|--------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| MT666          | Analysis     | CO1 | The ability to identify the types of failures in engineering components under service.                                               | L   | M   | Н   |
|                |              | CO2 | Able to determine fracture toughness of ductile and brittle materials.                                                               | M   | Н   | L   |
|                |              | CO3 | Knowledge of the tools and techniques to perform failure analysis. Ability to perform fractographic analysis after various failures. | L   | Н   | M   |
|                |              | CO4 | Ability to perform fractographic analysis after various failures.                                                                    | Н   | M   | L   |
|                |              | CO5 | The ability to identify different failure mechanisms resulting from manufacturing Processes.                                         | Н   | L   | M   |
|                |              | CO6 | Able to analyze the failures with the help of case studies and suggest prevention methods for failure.                               | M   | L   | Н   |



| Course Code          | : | MT667                                 |
|----------------------|---|---------------------------------------|
| Course Title         | : | Surface Engineering                   |
| Type of Course       | : | PE                                    |
| Prerequisites        | : | NIL                                   |
| <b>Contact Hours</b> | : | 3                                     |
| Course Assessment    | : | Continuous Assessment, End Assessment |
| Methods              |   |                                       |

| CLO1 | To analyse the various concepts of surface engineering and comprehend the design |
|------|----------------------------------------------------------------------------------|
|      | difficulties.                                                                    |

#### **Course Content**

- Introduction tribology, surface degradation, wear and corrosion, types of wear, roles of friction and lubrication- overview of different forms of corrosion, introduction to surface engineering, importance of substrate
- Chemical and electrochemical polishing, significance, specific examples, chemical conversion coatings, phosphating, chromating, chemical colouring, anodizing of aluminum alloys, thermochemical processes -industrial practices.
- Surface pre-treatment, deposition of copper, zinc, nickel, and chromium principles and practices, alloy plating, electro composite plating, electroless plating of copper, nickel-phosphorous, nickel-boron; electroless composite plating; application areas, properties, test standards (ASTM) for assessment of quality deposits.
- Definitions and concepts, physical vapour deposition (PVD), evaporation, sputtering, ion plating, plasma nitriding, process capabilities, chemical vapour deposition (CVD), metal organic CVD, plasma assisted CVD, specific industrial applications.
- Thermal spraying, techniques, advanced spraying techniques plasma surfacing, D- Gun and high velocity oxy-fuel processes, laser surface alloying and cladding, specific industrial applications, tests for assessment of wear and corrosion behavior. Weld Surfacing.

#### References

| 1. | Sudarshan T S, 'Surface modification technologies - An Engineer's guide', MarcelDekker, |
|----|-----------------------------------------------------------------------------------------|
|    | New York, 1989                                                                          |
| 2. | Varghese C.D, 'Electroplating and Other Surface Treatments - A Practical Guide', TMH,   |
|    | 1993                                                                                    |

# **Course Outcomes (CO)**

| CO1 | Define different forms of processing techniques of surface engineering materials.     |
|-----|---------------------------------------------------------------------------------------|
| CO2 | Know the types of Pre-treatment methods to be given to surface engineering.           |
| CO3 | Select the Type of Deposition and Spraying technique with respect to the application. |
| CO4 | Study of surface degradation of materials.                                            |
| CO5 | Asses the surface testing methods and comprehend the degradation properties.          |



| Course<br>Code | Course Title           | СО  | Course outcomes At the end of the course, students will be able                       | PO1 | PO2 | PO3 |
|----------------|------------------------|-----|---------------------------------------------------------------------------------------|-----|-----|-----|
| MT667          | Surface<br>Engineering | CO1 | Define different forms of processing techniques of surface engineering materials.     | Н   | L   | Н   |
|                |                        | CO2 | Know the types of Pre-treatment methods to be given to surface engineering.           | Н   | L   | Н   |
|                |                        | CO3 | Select the Type of Deposition and Spraying technique with respect to the application. | Н   | L   | Н   |
|                |                        | CO4 | Study of surface degradation of materials.                                            |     |     |     |
|                |                        | CO5 | Asses the surface testing methods and comprehend the degradation properties.          | Н   | Н   | M   |



| Course Code          | : | MT668                                 |
|----------------------|---|---------------------------------------|
| Course Title         | : | Modeling in Materials Processing      |
| Type of Course       | : | PE                                    |
| Prerequisites        | : | NIL                                   |
| <b>Contact Hours</b> | : | 3                                     |
| Course Assessment    | : | Continuous Assessment, End Assessment |
| Methods              |   |                                       |

| CLO1 | To learn principles of physical and mathematical modeling   |
|------|-------------------------------------------------------------|
| CLO2 | To gain experience in solving simple non-linear equations   |
| CLO3 | To gain hands-on experience in using software packages      |
| CLO4 | To familiarize with various modeling methods and strategies |

#### **COURSE CONTENT**

- Overview of Physical and Mathematical modeling principles, advantages, and limitations
- Physical modeling principles Similarity criteria, Hot and Cold models, Pilot scale models, Dimensional Analysis, case studies related to steelmaking processes.
- Mathematical modeling principles Static vs dynamic models, Goals and Strategies, Turbulent and multiphase flows, coupled phenomena, Governing equations, boundary conditions, overview of solution methodologies, Boussinesq approximation, convergence criteria, numerical stability criteria, steady and transient problems, heating of slab example.
- Introduction to CFD software (ANSYS Fluent and open-source software) CAD geometry building, solution and postprocessing exercises Practice problems 2D laminar pipe flow and 2D plane channel turbulent flow, near wall treatment, validation with benchmark cases
- Mathematical modeling of industrial processes Mixing behavior in Ladle (batch process), Residence time distribution in tundish (continuous process), Continuous casting process complexities, Alloy melting, Mass balance model of a gas circuit in DR process, Kinetic modeling of ladle refining process, Thermal and Mechanical Simulation of welding processes.

#### References

| 1. | Szekely J., Themelis N. J., 'Rate Phenomena in Process Metallurgy,' Wiley, 1971             |
|----|---------------------------------------------------------------------------------------------|
| 2. | Dipak Mazumdar and James W. Evans, 'Modeling of Steelmaking Processes,' CRC Press, 2009     |
| 3. | S. K. Dutta, 'Fundamental of Transport Phenomena and Metallurgical Process                  |
|    | Modelling', Springer, 2021                                                                  |
| 4. | 'CFD Modeling and Simulation in Materials Processing,' Proceedings of Symposium held during |
|    | TMS 2012, Annual Meeting and Exhibition, Orlando USA.                                       |

### **COURSE OUTCOMES (CO)**

At The End of The Course Student will be able.

| CO1 | To assess the similarity criteria to build valid physical models                       |
|-----|----------------------------------------------------------------------------------------|
| CO2 | To formulate the appropriate building blocks of mathematical models                    |
| CO3 | To solve set of non-linear equations iteratively without and with the use of software. |
| CO4 | To visualize modeling of complex industrial scale processes in material processing     |



| Course<br>Code | Course Title             | СО  | Course outcomes At the end of the course, students will be able                        | PO1 | PO2 | PO3 |
|----------------|--------------------------|-----|----------------------------------------------------------------------------------------|-----|-----|-----|
| MT668          | Modeling In<br>Materials | CO1 | To assess the similarity criteria to build valid physical models                       | M   | L   | M   |
|                | Processing               | CO2 | To formulate the appropriate building blocks of mathematical models                    | Н   | M   | Н   |
|                |                          | CO3 | To solve set of non-linear equations iteratively without and with the use of software. | M   | L   | M   |
|                |                          | CO4 | To visualize modelling of complex industrial scale processes in material processing    | Н   | Н   | Н   |



| Course Code       | : | MT669                         |
|-------------------|---|-------------------------------|
| Course Title      | : | Automotive Materials          |
| Type of Course    | : | PE                            |
| Prerequisites     | : | Nil                           |
| Contact Hours     | : | 3                             |
| Course Assessment | : | Continuous and End Assessment |
| Methods           |   |                               |

**CLO1** To impart the knowledge in auto mobile materials and to equip the students to meet the demands of automobile engineering.

#### **Course Content**

- Otto cycle, diesel cycle, working principle and constructional details of two stroke and four stroke engine, carburetor, fuel feed systems, mechanical and electrical pumps. Petrol injection. Working principle of compression ignition engine, diesel injection systems, recent trends in engine technology
- Engine cylinder: Structure and functions, types, cylinder blocks materials and manufacturing processes, improving engine components with surface modifications, Piston: Structures and functions, types, piston materials, piston manufacturing processes.
- Structure, function and materials for piston rings, camshaft, valves and valve seats, valve springs, connecting rod, crankshaft, turbocharger, and exhaust manifold; ULSAB initiative from steel industry; tailor welds.
- Types of chassis layout and chassis materials, vehicle frames, materials used for car body, front axle and steering system, drive line, propeller shaft, universal joints, wheels, and suspension system.
- Environmental impact of emissions from IC engines, Catalyst: catalysts for petrol engines, structures and functions, catalyst to reduce NOx, controlling pollution at cold start, Onboard diagnosis. Exhaust gas treatment for diesel engines: particulate filters, regenerative methods, expendable catalyst additive, deNo<sub>x</sub> catalyst.

- Ganesan. V, Internal Combustion Engines, Tata-McGraw Hill Publishing Co., New Delhi, 1994
   Hiroshi Yamagata, The Science and Technology of Materials in Automotive Engines, Woodhead Publishing in Materials, 2005
- 3. Hajra Choudhury, Elements of Workshop Technology, Vol-I and Vol-II Asia Publishing House, 1996.



| CO1 | Understand the fundamentals of automobile engineering and different components in automobile  |
|-----|-----------------------------------------------------------------------------------------------|
| CO2 | Describe the importance and reasons for using different types of material used in automobiles |
| CO3 | Understand future challenges and expectations in automobile engineering.                      |

| Course<br>Code | Course<br>Title         | СО  | Course outcomes At the end of the course, students                                                         | PO1 | PO2 | PO3 |
|----------------|-------------------------|-----|------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| MT669          | Automotive<br>Materials | CO1 | will be able  Understand the fundamentals of automobile engineering and different components in automobile | Н   | L   | Н   |
|                |                         | CO2 | Describe the importance and reasons for using different types of material used in automobiles              | Н   | Н   | Н   |
|                |                         | CO3 | Understand future challenges and expectations in automobile engineering.                                   | Н   | L   | Н   |



| Course Code          | :  | MT670                                 |
|----------------------|----|---------------------------------------|
| Course Title         | :  | Nanomaterials and Technology          |
| Type of Course       | :  | PE                                    |
| Prerequisites        | •• | NIL                                   |
| <b>Contact Hours</b> | :  | 3                                     |
| Course Assessment    | :  | Continuous Assessment, End Assessment |
| Methods              |    |                                       |

| CLO1 | To know the fundamental concepts of nanomaterials, synthesizing methods, their       |
|------|--------------------------------------------------------------------------------------|
|      | properties at nanoscale and possible technological applications in various fields of |
|      | science and engineering                                                              |

## **Course Content:**

- Concept of nano materials scale / dimensional aspects, Top-down and bottom-up approaches for preparing nano materials.
- Advantages and limitations at the nano level thermodynamic aspects at the nano level, health, and environmental issues.
- Characterization of nano materials and nano structures, important characterization techniques for nano size measurement.
- Overview of properties of nano materials, Introduction to nano composites, processing of nanocomposites.
- Applications in different areas such as semi-conductors, sensors, nanostructured bio ceramics and nanomaterials for drug delivery, Energy related, fuel cells, Photocatalysis applications.

#### **References:**

| 1 | Pradeep T "Nano: The Essentials", Mc Graw Hill Publishing Co. Ltd., 2007              |
|---|---------------------------------------------------------------------------------------|
| 2 | Mick Wilson et al, "Nanotechnology", Overseas Press (India) Pvt. Ltd., 2005           |
| 3 | Charles P. Poole, Jr., Frank J. Owens, "Introduction to nano technology", Wiley, 2003 |
| 4 | Gunter Schmid, "Nanoparticles: From Theory to Applications", Wiley-VCH Verlag         |
|   | GmbH & Co., 2004.                                                                     |

## **Course outcomes (CO)**

| CO1             | Understand the concepts of nanomaterials and their properties               |  |  |  |  |  |
|-----------------|-----------------------------------------------------------------------------|--|--|--|--|--|
| CO <sub>2</sub> | Learn different routes of synthesizing methods of nanomaterials             |  |  |  |  |  |
| CO3             | Know the change in properties at the nanoscale level and their applications |  |  |  |  |  |
| CO4             | Understanding the risks on producing nanomaterials and safety precautions   |  |  |  |  |  |



| Course<br>Code | Course Title      | СО  | Course outcomes At the end of the course, students will be able             | PO1 | PO2 | PO3 |
|----------------|-------------------|-----|-----------------------------------------------------------------------------|-----|-----|-----|
| MT670          | Nanomaterials and | CO1 | Understand the concepts of nanomaterials and their properties               | Н   | L   | Н   |
|                | technology        | CO2 | Learn different routes of synthesizing methods of nanomaterials             | Н   | M   | M   |
|                |                   | CO3 | Know the change in properties at the nanoscale level and their applications | Н   | L   | Н   |
|                |                   | CO4 | Understanding the risks on producing nanomaterials and safety precautions   | M   | L   | M   |



| Course Code       |   | MT671                                 |
|-------------------|---|---------------------------------------|
| Course Title      |   | Advanced Electrochemical Techniques   |
| Type of Course    |   | PE                                    |
| Prerequisites     |   | Nil                                   |
| Contact Hours     |   | 3 hours                               |
| Course Assessment | : | Continuous Assessment, End Assessment |
| Methods           |   |                                       |

| CLO1 | To learn basic concepts of electrodes, electrolytes, electrode potentials and reference electrodes |
|------|----------------------------------------------------------------------------------------------------|
| CLO2 | To learn fundamental principles of electrode-electrolyte interface and electrode kinetics          |
| CLO3 | To learn and understand DC and AC electrochemical techniques                                       |
| CLO4 | To learn underlying mechanisms, applications of different electrochemical techniques               |

#### **Course Content**

- Thermodynamic and Transport properties of electrolytes aqueous and molten; solution models: Debye-Hückel (aqueous), Temkin (molten salts); electrode potentials (the underlying physics, i.e., electron excess or electron deficiency on the electrode); emf series (aqueous and molten salts); reference electrodes (thermodynamics and kinetics)
- Fundamental aspects of electrochemical processes Electrode-electrolyte interface, nature
  of the double layer; kinetics of electrode processes, charge transfer at the
  electrode/electrolyte interface, cell potential, current distribution, and analytical
  techniques
- DC methods such as cyclic voltammetry, linear sweep voltammetry, intermittent titration techniques, Potentio dynamic polarization, chronopotentiometry, chronoamperometry, galvanostatic cycling with potential limitation.
- AC methods, i.e., AC voltammetry and electrochemical impedance spectroscopy, including fitting and analysis of equivalent circuits.
- Electrochemical mechanisms involved in electrocatalysis, general & localized corrosion and energy systems. Application of techniques in various fields corrosion & surface engineering, energy conversion & storage devices like fuel cells, supercapacitors, batteries etc., electrochemical processing of materials such as winning, refining, plating, synthesis, and electrochemical recycling. Introduction to Concrete corrosion technologies, Corrosion in Hydrogen Generation and Storage devices.

- 1. Bard, A. J., and L. R. Faulkner. Electrochemical Methods. 2nd Edition. New York: Wiley, 2004.
- 2. Fontana. M.G., Corrosion Engineering, Tata McGraw Hill, 3rd Edition, 2005.
- 3. Crompton R.G., Batchelur-Mculey C., Dikinson E. J. F., Understanding Voltammetry. Imperial College Press, 2012.
- 4. Barsoukov E., McDonald J.R., Impedance Spectroscopy Theory, Experiment, and Applications, Wiley-Inter science, 2<sup>nd</sup> Edition, 2005.
- 5. Shriram S, Kandler S, Jeremy N, Gi-Heon K, Ahmad P, Matthew K, Design and Analysis of Large Lithium-Ion Battery Systems, Artech House, 2014.



| CO1 | Asses electrode & electrolyte properties, electrode potentials and distinguish different |
|-----|------------------------------------------------------------------------------------------|
|     | reference electrodes                                                                     |
| CO2 | Explain importance of electrode-electrolyte interface and kinetics occurring at the      |
|     | interfaces                                                                               |
| CO3 | Analyze and apply different DC and AC electrochemical techniques                         |
| CO4 | Explain mechanisms involved and applications of different electrochemical techniques     |

| Course<br>Code | Course Title                              | СО  | Course outcomes At the end of the course, students will be able                                               | PO1 | PO2 | PO3 |
|----------------|-------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| MT671          | Advanced<br>Electrochemical<br>Techniques | CO1 | Asses electrode & electrolyte properties, electrode potentials and distinguish different reference electrodes | Н   | L   | M   |
|                |                                           | CO2 | Explain importance of electrode-<br>electrolyte interface and kinetics<br>occurring at the interfaces         | Н   | M   | Н   |
|                |                                           | CO3 | Analyse and apply different DC and AC electrochemical techniques                                              | Н   | Н   | M   |
|                |                                           | CO4 | Explain mechanisms involved and applications of different electrochemical techniques                          | M   | L   | M   |



| Course Code                      | : | MT672                                        |
|----------------------------------|---|----------------------------------------------|
| Course Title                     |   | Developments in Iron Making and Steel Making |
| Type of Course                   | : | PE                                           |
| Prerequisites                    | : | NIL                                          |
| <b>Contact Hours</b>             | : | 3                                            |
| <b>Course Assessment Methods</b> | : | Continuous Assessment, End Assessment        |

| CLO1 | To study the concepts and various processing techniques involved in the field of iron |
|------|---------------------------------------------------------------------------------------|
|      | and steel making.                                                                     |

## **Course Content**

- Principles of ferrous process metallurgy; review of related concepts from metallurgical thermodynamics and kinetics; sequence of operations in steel plants; basic aspects of furnaces, refractories, and fuels; differences between the production of carbon steels and highly alloyed steels
- Overview of iron making, steel making, refining and continuous casting processes; indicative process calculations; environmental considerations; quality issues in steel plant operations
- Modifications of steel making converter operations; developments such as sub lance and dynamic control of steel making, secondary treatment including ladle metallurgy and injection metallurgy; continuous steel making; illustrative numerical problems
- Modifications of continuous casting process; developments such as flow control devices in tundish, sequence casting, high speed casting, detection / prevention of caster breakouts, electromagnetic stirring, thin slab casting; strip casting; illustrative numerical problems.
- Current research on metallurgical slags, measurement of critical properties, use of process modeling; design and selection of slags and refractories; discussion on related binary and ternary phase diagrams

# References

| 1. | Current literature on related topics.                                                              |
|----|----------------------------------------------------------------------------------------------------|
| 2. | Tupkary R.H., 'Introduction to Modern Steel Making', Khanna Publishers, 2004 (primary text).       |
| 3. | Bashforth G.R, 'Manufacture of Iron and Steel', Volume I - IV, Asia Publications, 1996.            |
| 4. | B. Deo, R. Boom, 'Fundamentals of steel making metallurgy', Prentice Hall International, New       |
|    | York,1993 (primary reference).                                                                     |
| 5. | Continuous casting – Vol. 1, 'Chemical and Physical Interactions during transfer operations', Iron |
|    | andSteel Society, Warrendale, PA, USA, 198.                                                        |

# **Course Outcomes (CO)**

| CO1             | Understand the basics of metallurgy involved in iron and steel making.               |
|-----------------|--------------------------------------------------------------------------------------|
| CO <sub>2</sub> | Describe the overview of processing of iron and steel.                               |
| CO3             | Understand the recent developments, modifications, and applications in the iron and  |
|                 | steel making process and apply them in real time problems associated with the making |
|                 | of iron and steel industry.                                                          |



| Course<br>Code | Course Title                                       | СО  | Course outcomes At the end of the course, students will be able                                                                                                                                      | PO1 | PO2 | PO3 |
|----------------|----------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| MT672          | Developments In<br>Iron Making and<br>Steel Making | CO1 | Understand the basics of metallurgy involved in iron and steel making.                                                                                                                               | Н   | L   | Н   |
|                |                                                    | CO2 | Describe the overview of processing of iron and steel.                                                                                                                                               | M   | Н   | M   |
|                |                                                    | CO3 | Understand the recent developments, modifications, and applications in the iron and steel making process and apply them in real time problems associated with the making of iron and steel industry. | Н   | M   | Н   |



| Course Code          | :   | MT673                                 |
|----------------------|-----|---------------------------------------|
| Course Title         | :   | Additive Manufacturing                |
| Type of Course       | :   | OE                                    |
| Prerequisites        | :   | NIL                                   |
| <b>Contact Hours</b> | :   | 3                                     |
| Course Assessmen     | t : | Continuous Assessment, End Assessment |
| Methods              |     |                                       |

| CLO1 | To know the principal methods, areas of usage, possibilities and limitations aswell as                       |
|------|--------------------------------------------------------------------------------------------------------------|
| 6    | environmental effects of the Additive Manufacturing technologies                                             |
|      | To be familiar with the characteristics of the different materials those are used in Additive Manufacturing. |

#### **Course Content**

- Overview History Need-Classification -Additive Manufacturing Technology in product development-Materials for Additive Manufacturing Technology Tooling Applications.
- Basic Concept Digitization techniques Model Reconstruction Data Processing for Additive Manufacturing Technology: CAD model preparation – Part Orientation and support generation – Model Slicing –Tool path Generation – Software for Additive Manufacturing Technology: MIMICS, MAGICS.
- Classification Liquid based system Stereolithography Apparatus (SLA) Principle, process, advantages, and applications – Solid based system –Fused Deposition Modeling Principle, process, advantages and applications, Laminated Object Manufacturing, Wire Arc Additive Manufacturing
- Selective Laser Sintering Principles of SLS process Process, advantages and applications,
   Three-Dimensional Printing Principle, process, advantages, and applications- Laser
   Engineered Net Shaping (LENS), Electron Beam Melting.
- Customized implants and prosthesis: Design and production. Bio-Additive Manufacturing-Computer Aided Tissue Engineering (CATE) Case studies.

#### References

| 1. | Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital |
|----|--------------------------------------------------------------------------|
|    | Manufacturing, 2nd Ed. (2015), Ian Gibson, David W. Rosen, Brent Stucker |

#### **Course Outcomes (CO)**

| CO1             | Upon completion of this course, the students can be able to compare different methods |
|-----------------|---------------------------------------------------------------------------------------|
|                 | and discuss the effects of the Additive Manufacturing technologies.                   |
| CO <sub>2</sub> | Analyse the characteristics of the different materials in Additive Manufacturing.     |
| CO <sub>3</sub> | Select the appropriate techniques according to the applications.                      |



| Course<br>Code | Course Title              | СО  | Course outcomes At the end of the course, students will be able                                                                                           | PO1 | PO2 | PO3 |
|----------------|---------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| MT673          | Additive<br>Manufacturing | CO1 | Upon completion of this course, the students can be able to compare different methods and discuss the effects of the Additive Manufacturing technologies. | Н   | L   | Н   |
|                |                           | CO2 | Analyse the characteristics of the different materials in Additive Manufacturing.                                                                         | M   | Н   | Н   |
|                |                           | CO3 | Select the appropriate techniques according to the applications.                                                                                          | M   | L   | Н   |



| Course code          | : | MT674                                 |
|----------------------|---|---------------------------------------|
| Course Title         |   | Phase Transformation                  |
| Type of Course       | : | PE                                    |
| Prerequisites        |   | Physical Metallurgy                   |
| <b>Contact Hours</b> |   | 3                                     |
| Course Assessment    | : | Continuous Assessment, End Assessment |
| Methods              |   |                                       |

| CLO1 | To become familiar with various phase transformation processes and their influence  |
|------|-------------------------------------------------------------------------------------|
|      | on structure-property correlations                                                  |
| CLO2 | To understand the classical nucleation theory and different modes of solidification |
| CLO3 | To develop a comprehensive understanding on Fe-Fe3C Phase diagram and Time-         |
|      | Temperature Transformation diagram and study their structural transformation with   |
|      | varying temperature                                                                 |
| CLO4 | To study the kinetics and mechanism of solid-solid phase transformation and         |
|      | understand the structure –property relation                                         |

## **Course Content:**

- Introduction to phase transformations & classification. Diffusion in solids: phenomenological approach and atomistic approach. Nucleation and growth theories of vapour to liquid, liquid to solid, and solid to solid transformations, Partition less solidification
- Homogeneous and heterogeneous strain energy effect during nucleation; Thermodynamics of solidification, evolution of microstructures in pure metals and binary alloys.
- Precipitation from solid solution: types of precipitation reactions, crystallographic description of
  precipitates, precipitation sequence and age hardening, Precipitate coarsening, spinodal
  decomposition.
- Iron-carbon system: Thermodynamics of peritectic, eutectic, and eutectoid transformations. nucleation and growth of equilibrium phases and non-equilibrium transformations. Diffusion less transformation.
- Interface-controlled growth and diffusion-controlled growth; Kolmogorov-Johnson-Mehl-Avrami (KJMA) kinetics, TTT and CCT diagrams, precipitate coarsening

#### References

| 1. | Porter, D.A, Easterling, K.E., and Sherif, M.A., Phase transformations in metals and alloys, 3rd Ed, |
|----|------------------------------------------------------------------------------------------------------|
|    | CRC press, 2017.                                                                                     |
| 2. | Reza Abbaschian, Robert E. Reed-Hill, Physical Metallurgy Principles, Cengage Learning, 2008         |
| 3. | Lakhtin Y., 'Engineering Physical Metallurgy', 2nd Edition, University Press of the Pacific, 2000    |
| 4. | Prabhu Dev K. H., 'Handbook of Heat Treatment of Steel', McGraw Hill Education, 2003                 |
| 5. | Avner S.H., 'Introduction to Physical Metallurgy,' 2nd edition, Tata McGraw                          |
|    | Hill, 1984                                                                                           |

## **Course Outcomes (CO)**

| CO1 | To understand the nucleation and growth theories relevant to phase transformation                   |
|-----|-----------------------------------------------------------------------------------------------------|
| CO2 | To understand the evolution of microstructures in pure metals and binary alloys.                    |
| CO3 | To understand the different mechanisms of phase transformation (diffusion, diffusion less, massive, |
|     | spinodal decomposition).                                                                            |
| CO4 | To apply the TTT and CCT diagrams to design a heat treatment cycle for a given alloy.               |



| Course<br>Code | Course Title            | СО  | Course outcomes At the end of the course, students will be able                                                              | PO1 | PO2 | PO3 |
|----------------|-------------------------|-----|------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| MT674          | Phase<br>Transformation | CO1 | To understand the nucleation and growth theories relevant to phase transformation                                            | Н   | L   | M   |
|                |                         | CO2 | To understand the evolution of microstructures in pure metals and binary alloys.                                             | Н   | L   | Н   |
|                |                         | CO3 | To understand the different mechanisms of phase transformation (diffusion, diffusion less, massive, spinodal decomposition). | Н   | L   | Н   |
|                |                         | CO4 | To apply the TTT and CCT diagrams to design a heat treatment cycle for a given alloy.                                        | Н   | Н   | L   |



| Course code          | : | MT675                                 |
|----------------------|---|---------------------------------------|
| Course Title         |   | Crystallography                       |
| Type of Course       | : | PE                                    |
| Prerequisites        | : | Nil                                   |
| <b>Contact Hours</b> | : | 3                                     |
| Course Assessment    | : | Continuous Assessment, End Assessment |
| Methods              |   |                                       |

| CLO1 | To become familiar with basics of crystal systems and lattices.                 |  |  |  |  |  |
|------|---------------------------------------------------------------------------------|--|--|--|--|--|
| CLO2 | To get adapted with various crystallographic symmetries, point groups and space |  |  |  |  |  |
|      | groups and also understand the correlation between symmetry and properties      |  |  |  |  |  |
| CLO3 | To get acquainted with different types of solid solutions and other compounds   |  |  |  |  |  |
| CLO4 | To become familiar with crystallographic defects and their interactions and     |  |  |  |  |  |
|      | understand how defects determine the properties                                 |  |  |  |  |  |

#### **Course Content:**

- Motif, lattices, lattice points, lattice parameter, Crystal systems, 14 Bravais lattices, Coordination number, number of atoms per unit cell, packing factor, Miller indices of planes directions, repeat distance, linear density packing factor along a direction, planar density, planar packing fraction
- Symmetry and crystallography. Symmetry in crystals. Rotational symmetry, stereographic projections. Crystallographic point groups, micro translations, symmetry of reciprocal lattice, systematic absences, space groups special position.
- Radius ration for coordination number 2,4,6,8. Interstitial solid solution, Interstitial compounds. AX, AX2, AB03, A2B04 crystal structures.
- Frenkel- Schottky ionic defects, Ionic defect concentration, solute incorporation, electronic defect electronic defect concentration
- Band Gap, density of states, defects. Defects and chemical reaction.

#### **References:**

| 1. | Christopher Hammond, The Basics of Crystallography and Diffraction, Oxford Science Publications, |
|----|--------------------------------------------------------------------------------------------------|
|    | third edition, 2009                                                                              |
| 2. | Donald R. Askeland and Pradeep phule, The science and Engineering Materials. Thmson, 2003        |
| 3. | Cullity B.D., Elements of X-ray diffraction, Addison-Wesley Publishing company 1956              |

# **Course Outcomes (CO)**

| CO1 | To distinguish different crystal structure and their characteristics                       |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------|--|--|--|--|--|
| CO2 | To understand the different symmetry in the crystal systems and their importance           |  |  |  |  |  |
| CO3 | To explain the crystal structure of interstitial compounds and solid solution              |  |  |  |  |  |
| CO4 | To identify and characterize the various ionic and electronic defects in crystal structure |  |  |  |  |  |
| CO5 | To demonstrate the importance of band gap and density of states in material properties.    |  |  |  |  |  |



| Course<br>Code | Course Title    | СО  | Course outcomes At the end of the course, students will be able                            | PO1 | PO2 | PO3 |
|----------------|-----------------|-----|--------------------------------------------------------------------------------------------|-----|-----|-----|
| MT675          | Crystallography | CO1 | To distinguish different crystal structure and their characteristics                       | Н   | L   | Н   |
|                |                 | CO2 | To understand the different symmetry in the crystal systems and their importance           | Н   | L   | Н   |
|                |                 | CO3 | To identify and characterize the various ionic and electronic defects in crystal structure | Н   | Н   | L   |
|                |                 | CO4 | To demonstrate the importance of band gap and density of states in material properties.    | Н   | M   | М   |



| Course Code          | : | MT676                                 |
|----------------------|---|---------------------------------------|
| Course Title         |   | Particulate Technology                |
| Type of Course       | : | PE                                    |
| Prerequisites        | : | NIL                                   |
| <b>Contact Hours</b> | : | 3                                     |
| Course Assessment    | : | Continuous Assessment, End Assessment |
| Methods              |   |                                       |

| CLO1 | To introduce the importance non-conventional processing routes for different |
|------|------------------------------------------------------------------------------|
|      | materials and its importance for advanced materials manufacturing.           |

#### **Course Content**

- Introduction to particulate /powder processing: Historical development, merits, and limitations of this process over other conventional manufacturing methods and applications of particulate processing. Stages of powder metallurgy process in design and manufacturing of full shape components
- Attributes of powders: Chemical purity, microstructure, size & distribution, shape, surface area, bulk properties (powder density: apparent density, tap density, flow rate, compressibility, Standards for powder characterizations, procedure, and analysis of powder characteristics, Relate the powder attributes in components manufacturing
- Particulates / powders fabrication methods: Mechanical methods, Chemical methods, and Physical methods., Customizing process parameters to tailor the powders, Advances in powder manufacturing methods. Powders for specific engineering applications such as additive manufacturing, automobile, magnetic materials, etc.
- **Shaping and Compaction:** Binder assisted pressure less compaction (Slip & slurry casting, extrusion, and injection moulding), precursor preparation and mould design.
- **Pressure assisted compaction**: Selection of press and die design, pressure selection upon density, selection of lubrications (both internal and externals) Understanding compaction mechanism and measure the green density and strength, relate green density with pressure and strength. Compaction methods: Die compaction, high velocity compaction, warm compaction, powder rolling, Alternative new pressing technologies, Pressure, and temperature assisted powder consolidation: Hot pressing, spark plasma sintering, etc.
- **Sintering:** Fundamental, Sintering theory, sintering diagrams, Effect of compaction on sintering, Sintering types and variables, Solid state sintering, Liquid phase sintering, Sintering equipment and practical sintering operations, Full density methods, Spray forming methods
- **Finishing operation** / **post-sintering processes:** Repressing, machining, heat treatment, etc. Inspection methods and characterization of sintered components (microstructure, porosity, density, mechanical properties, etc.)
- **Applications:** Structural components, Friction materials, Wear resistant materials, Magnetic materials, etc.
- New development in particulate technology.



# References

| 1. | German R.M., 'Powder Metallurgy Science', Metal Powder Industries Federation, New Jersey, 1994 |
|----|------------------------------------------------------------------------------------------------|
|----|------------------------------------------------------------------------------------------------|

<sup>2.</sup> Kuhn H. A. and Alan Lawley, 'Powder Metallurgy Processing - New Techniques and Analysis', Oxford IBH, Delhi, 1978.

# **Course Outcomes (CO)**

| CO1             | Describe the basic mechanism of powder production for variety of materialsto meet  |
|-----------------|------------------------------------------------------------------------------------|
|                 | the demand of the research and industrial needs.                                   |
| CO <sub>2</sub> | Characterize the various powders (materials) based on the engineeringapplications  |
|                 | Differentiate the processing routes for various powders (materials) and associated |
|                 | technology.                                                                        |
| CO3             | Define modern day processing routes and apply them successfully to materials       |
|                 | processing.                                                                        |
| CO4             | Apply the powder metallurgy concepts to design new materials for advanced          |
|                 | engineering materials.                                                             |
| CO5             | Apply the concepts of particulate processing to produce non-conventionalmaterials  |
|                 | which are difficult to produce other techniques.                                   |

| Course<br>Code | Course Title              | СО  | Course outcomes At the end of the course, students will be able                                                                                                                   | PO1 | PO2 | PO3 |
|----------------|---------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| MT676          | Particulate<br>Technology | CO1 | Describe the basic mechanism of powder production for variety of materialsto meet the demand of the research and industrial needs.                                                | Н   | L   | Н   |
|                |                           | CO2 | Characterize the various powders (materials) based on the engineering applications Differentiate the processing routes for various powders (materials) and associated technology. | Н   | Н   | M   |
|                |                           | CO3 | Define modern day processing routes and apply them successfully tomaterials processing.                                                                                           | Н   | M   | Н   |
|                |                           | CO4 | Apply the powder metallurgy concepts to design new materials for advancedengineering materials.                                                                                   | M   | L   | Н   |
|                |                           | CO5 | Apply the concepts of particulate processing to produce non-conventional materials which are difficult to produce other techniques.                                               | M   | L   | Н   |



| Course Code          | : | MT677                                 |
|----------------------|---|---------------------------------------|
| Course Title         |   | Process Modeling                      |
| Type of Course       | : | PE                                    |
| Prerequisites        |   | NIL                                   |
| <b>Contact Hours</b> |   | 3                                     |
| Course Assessment    | : | Continuous Assessment, End Assessment |
| Methods              |   |                                       |

| CLO1 | To provide an understanding of the basic principles of modeling and use those |
|------|-------------------------------------------------------------------------------|
|      | methods to analyze and solve metallurgical Processes.                         |

#### **Course Content**

- Mathematical modeling, physical simulation, advantages, and limitations; process control, instrumentation, and data acquisition systems
- Review of transport phenomena, differential equations & numerical methods; concept of physical domain and computational domain, assumptions and limitations in numerical solutions, introduction to FEM & FDM, examples
- Introduction to software packages— useful websites and generic information about different products ANSYS, Thermocalc, CFD; usage of expert systems, artificial intelligence and robotics; demonstration of some software packages.
- Physical modeling cold and hot models; case studies of water models, use of computers for the construction of phase diagrams, alloy design, crystallography, phase transformations and thermo chemical calculations.
- Case studies from literature pertaining to modeling of solidification / heat transfer, fluid flow, casting, welding, and liquid metal treatment.

### References

| 1. | Szekely J., Themelis N. J., 'Rate Phenomena in Process Metallurgy', Wiley, 1971 |
|----|---------------------------------------------------------------------------------|
| 2. | P.S. Ghoshdastidar, "Computer Simulation of Flow and Heat Transfer", TataMcGraw |
|    | Hill, New Delhi, 1998                                                           |

## **Course Outcomes (CO)**

| CO1 | Understand the capabilities provided by various modelling methods.      |
|-----|-------------------------------------------------------------------------|
| CO2 | Analysis methods and apply the appropriate ones to solve real problems. |
| CO3 | Gain hands-on experience in using software packages.                    |

| Course<br>Code | Course<br>Title      | СО  | Course outcomes At the end of the course, students will be able         | PO1 | PO2 | PO3 |
|----------------|----------------------|-----|-------------------------------------------------------------------------|-----|-----|-----|
| MT677          | Process<br>Modelling | CO1 | Understand the capabilities provided by various modeling methods.       | Н   | L   | M   |
|                |                      | CO2 | Analysis methods and apply the appropriate ones to solve real problems. | Н   | M   | Н   |
|                |                      | CO3 | Gain hands-on experience in using software packages.                    | M   | L   | Н   |



| Course Code          |     | MT678                                                |
|----------------------|-----|------------------------------------------------------|
| Course Title         |     | <b>Advanced Material Characterization Techniques</b> |
| Type of Course       |     | PE                                                   |
| Prerequisites        |     | Nil                                                  |
| <b>Contact Hours</b> |     | 3                                                    |
| Course Assessment    | ••• | Continuous Assessment, End Assessment                |
| Methods              |     |                                                      |

| CLO1 | To become familiar with advanced microscopy techniques                              |
|------|-------------------------------------------------------------------------------------|
| CLO2 | To understand application of various advanced microscopy techniques in materials    |
|      | engineering                                                                         |
| CLO3 | To understand the post processing of results from various advanced characterization |
|      | techniques                                                                          |

## **Course Content**

- Electron back scattered diffraction –working principle, imaging, post-processing and orientation analysis, application
- Transmission Kikuchi diffraction -working principle, imaging, post-processing analysis, application, TKD vs EBSD, TKD vs TEM, TKD vs APT
- Aberration-corrected Transmission electron microscopy –basic principle, construction and operation, high resolution imaging, applications
- X-ray microscopy -principle, construction and operation, sample preparation, application and limitations, X-ray tomography
- Atom probe tomography –principle, construction and operation, sample preparation, IVAS software, post processing and 3D construction, application and limitations

| 1. | Micheal K Miller Richard G. Forbes, Atom probe tomography: The local electrode atom probe,     |
|----|------------------------------------------------------------------------------------------------|
|    | Springer New York, 2014.                                                                       |
| 2. | Chris Jacobsen, X ray Microscopy, Cambridge University Press, 2019                             |
| 3. | Adam J. Schwartz, Brent L. Adams, Mukul Kumar, Electron Back Scattered diffraction in Material |
|    | Science, 2nd Edition, Springer 2010                                                            |
| 4. | Glenn C. Sneddon, Patrick W. Trimby, Julie M. Cairney, Transmission Kikuchi diffraction in a   |
|    | scanning electron microscope: A review, Material Science and Engineering R: Reports, 2016      |
| 5. | C. Barry Carter and David B Williams, Transmission Electron Microscopy: Diffraction, Imaging   |
|    | and spectrometry, Springer 2016                                                                |



| CO1             | To understand the working principle of various advanced characterization techniques |
|-----------------|-------------------------------------------------------------------------------------|
| CO <sub>2</sub> | To choose a characterization technique to analyze various features of materials at  |
|                 | sub-micro scale                                                                     |
| CO3             | To interpret results of advanced characterization techniques                        |

| Course | Course Title     | CO  | Course outcomes                  | PO1 | PO2 | PO3 |
|--------|------------------|-----|----------------------------------|-----|-----|-----|
| Code   |                  |     | At the end of the course,        |     |     |     |
|        |                  |     | students will be able            |     |     |     |
| MT678  | Advanced         |     | To understand the working        | Н   | L   | Н   |
|        | material         | CO1 | principle of various advanced    |     |     |     |
|        | characterization |     | characterization techniques      |     |     |     |
|        | techniques       |     | To choose a characterization     | Н   | L   | Н   |
|        |                  | CO2 | technique to analyze various     |     |     |     |
|        |                  |     | features of materials at sub-    |     |     |     |
|        |                  |     | micro scale                      |     |     |     |
|        |                  | CO3 | To interpret results of advanced | Н   | L   | Н   |
|        |                  |     | characterization techniques      |     |     |     |



| Course Code          | : | MT679                                 |
|----------------------|---|---------------------------------------|
| Course Title         |   | Non-Destructive Testing               |
| Type of Course       | : | OE                                    |
| Prerequisites        | : | NIL                                   |
| <b>Contact Hours</b> | : | 3                                     |
| Course Assessment    | : | Continuous Assessment, End Assessment |
| Methods              |   |                                       |

| CLO1 | To impart knowledge in Non-Destructive Testing and understand the practical   |
|------|-------------------------------------------------------------------------------|
|      | importance of Non-Destructive testing methods in engineering with appropriate |
|      | case studies.                                                                 |

#### **Course Content**

- Visual Inspection- tools, applications, and limitations. Liquid Penetrant Inspection principles, types and properties of penetrants and developers. Advantages and limitations of various methods of LPI. Magnetic particle inspection- principles, instrumentation, applications, advantages, and limitations.
- Ultra sonic testing (UT) Nature of sound waves, wave propagation modes of sound wave generation Various methods of ultrasonic wave generation, types of UT, Principles, instrumentation, applications, advantages, limitations, A, B and C scan Time of Flight Diffraction (TOFD).
- Radiography testing (RT) Principles, instrumentation, applications, advantages and limitations of RT. Types and characteristics of X ray and gamma radiation sources, Principles, and applications of Fluoroscopy/Real-time radioscopy - advantages and limitations - recent advances.
- Eddy current testing Principles, types, instrumentation, applications, advantages, and limitations of eddy current testing.
- Acoustic emission testing Principles, instrumentation, types of signals and noises, applications, advantages, and limitations of acoustic emission testing.
- Thermography Principles, types, applications, advantages, and limitations. Optical & Acoustical holography- Principles, types, applications, advantages, and limitations. Case studies: weld, cast and formed components.
- Application of Industrial Internet of Things (IIoT) on NDT inspections.

### References

| 1. | Practical Non – Destructive Testing, Baldev raj, Narosa Publishing House (1997). |
|----|----------------------------------------------------------------------------------|
| 2. | Non-Destructive Testing, B. Hull and V. John, Macmillan (1988)                   |
| 3. | Krautkramer, Josef and Hebert Krautkramer, Ultrasonic Testing of Materials, 3rd  |
|    | edition, New York, Springer-Verlag (1983).                                       |

#### **Course Outcomes (CO)**

| CO1             | Understand the basics of Non-destructive testing.                                                                                                                                                                |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO <sub>2</sub> | Describe the overview of Non-destructive testing methods.                                                                                                                                                        |
| CO3             | Understand the recent developments, modifications, and applications in Non-destructive testing and apply them in real-time problems associated with failure analysis and regular quality testing for industries. |



| Course<br>Code | Course<br>Title     | СО  | Course outcomes At the end of the course, students will be able                                                                                                                                                  | PO1 | PO2 | PO3 |
|----------------|---------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| MT679          | Non-<br>Destructive | CO1 | Understand the basics of Non-destructive testing.                                                                                                                                                                | Н   | L   | Н   |
|                | Testing             | CO2 | Describe the overview of Non-destructive testing methods.                                                                                                                                                        | Н   | Н   | L   |
|                |                     | CO3 | Understand the recent developments, modifications, and applications in Non-destructive testing and apply them in real-time problems associated with failure analysis and regular quality testing for industries. | Н   | M   | Н   |



| Course Code          | : | MT701                                 |
|----------------------|---|---------------------------------------|
| Course Title         | : | Electrical Aspects of Welding         |
| Type of Course       | : | PE                                    |
| Prerequisites        | : | NIL                                   |
| <b>Contact Hours</b> | : | 3                                     |
| Course Assessment    | : | Continuous Assessment, End Assessment |
| Methods              |   |                                       |

| CLO1 | To gain understanding of static and dynamic characteristics of the electric arc and  |
|------|--------------------------------------------------------------------------------------|
|      | its associated power characteristics.                                                |
| CLO2 | To learn the basic principles, methods and circuit components that control operating |
|      | power and the volt-ampere characteristics in electric resistance and arc welding     |
| CLO3 | To gain knowledge of the operating principles of Alternators, D.C. generators and    |
|      | motors used forwelding.                                                              |
| CLO4 | To understand the operation and regulation of wire feed system and controlling or    |
|      | arcs through theuse of NC and computer controlled welding machines.                  |

#### **Course Content**

- Physical phenomenon occurring in the arc, potential distribution, static and dynamic arc characteristics; types of forces and metal transfer in the arc; arc blow, power source characteristics; volt-ampere relationship and its measurement,
- Basic principles, different methods of control of volt-ampere characteristics, operation, volt control, slope control, dual control, resistance welding transformers, welding rectifiers, choice of diode materials, use of thyristors, inverters
- Alternators and D.C. generators for welding, three brush generators, setting of power source, characteristics of D.C. motors, synchronous motors.
- Wire-feed system, carriage movement control, crater filling devices, up and down slopes, seam tracking devices, magnetic control of arcs, pulsing techniques, NC and computer-controlled welding machines, controls in resistance welding machines
- Measurements of welding current, voltage, temperature, load and displacement, X-Y
  and strip chart recorders. CRO, LVDT, arc welding analyzer, resistance welding
  monitor

| 1 |   | Welding Handbook, Volume 2, 7 <sup>th</sup> Edition, American Welding Society.                            |
|---|---|-----------------------------------------------------------------------------------------------------------|
| 2 | • | Richardson V. D., 'Rotating Electric Machinery and Transformer Technology', Prentice Hall of India, 1978. |



| CO <sub>1</sub> | Explain the physical phenomenon occurring in the arc and the types of forces and  |
|-----------------|-----------------------------------------------------------------------------------|
|                 | metal transfer in the arc based on measurements of power source characteristics.  |
| CO <sub>2</sub> | Select the right choice of diode material, thyristors and inverters based on the  |
|                 | understanding of the basic principles and methods for controlling the volt-ampere |
|                 | characteristics of the electric welding machines.                                 |
| CO <sub>3</sub> | Recognize and list the wire feed systems, carriages control techniques, tracking  |
|                 | devices andmagnetically control the arc using NC and computer controlled Welding  |
|                 | machines                                                                          |
| CO4             | Measure the welding current, voltage, temperature, load and displacement using    |
|                 | equipment's such as CRO, LVDT, arc welding analyser and resistance welding        |
|                 | monitors                                                                          |

| Course<br>Code | Course<br>Title                     | СО  | Course outcomes At the end of the course, students will be able                                                                                                                                                      | PO1 | PO2 | PO3 |
|----------------|-------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| MT701          | Electrical<br>Aspects of<br>Welding | CO1 | Explain the physical phenomenon occurring in the arc and the types of forces and metal transfer in the arc based on measurements of power source characteristics.                                                    | Н   | M   | Н   |
|                |                                     | CO2 | Select the right choice of diode material, thyristors and inverters based on the understanding of the basic principles and methods for controlling the volt-ampere characteristics of the electric welding machines. | Н   | M   | Н   |
|                |                                     | CO3 | Recognize and list the wire feed systems, carriages control techniques, tracking devices and magnetically control the arc using NC and computer controlled Welding machines.                                         | Н   | M   | Н   |
|                |                                     | CO4 | Measure the welding current, voltage, temperature, load and displacement using equipment's such as CRO, LVDT, arc welding analyser and resistance welding monitors.                                                  | Н   | M   | Н   |



| Course Code          | : | MT702                                 |
|----------------------|---|---------------------------------------|
| Course Title         | : | Welding Application Technology        |
| Type of Course       | : | PE                                    |
| Prerequisites        | : | NIL                                   |
| <b>Contact Hours</b> | : | 3                                     |
| Course Assessment    | : | Continuous Assessment, End Assessment |
| Methods              |   |                                       |

| CLO1 | To learn the Heat exchanges, power cycles, heating equipment's, materials and        |
|------|--------------------------------------------------------------------------------------|
|      | process used in making and testing of weld joints                                    |
| CLO2 | To understand the materials, processes, fabrication techniques used in welding of    |
|      | pressure vessels and in automatic welding systems used for automobile industry       |
| CLO3 | To gain knowledge of the materials, processes, fabrication, inspection and stringent |
|      | quality control procedures used in Oil, gas and nuclear industries                   |

#### **Course Content**

- Heat exchanges, power cycle piping, super heaters, reheaters, economizer, auxiliary pipes, materials, processes and testing/inspection.
- Materials, processes, fabrication techniques and field welding for pressure vessel applications
- Materials, processes, fabrication and construction, use of automatic welding and systems in automobile industry, automation
- Oil and gas industry, materials, processes, fabrication, inspection and testing, case studies, recent trends and developments.
- Materials, processes, fabrication, inspection and testing, reasons for stringent quality control measures in nuclear industry

## References

| 1. | American Welding Society, 'Guide for Steel Hull Welding', 1992                         |
|----|----------------------------------------------------------------------------------------|
| 2. | Gooch T. S., 'Review of Overlay Welding Procedure for Light Water Nuclear Pressure     |
|    | Vessels', American Welding Society, 1991                                               |
| 3. | Winter Mark H., 'Materials and Welding in Off-Shore Constructions', Elsevier, 1986     |
| 4. | Welding Institute Canada,' Welding for Challenging Environments', Pergamon Press, 1996 |
| 5. | Mishra. R.S and Mahoney. M.W, Friction Stir Welding and Processing, ASM,2007           |

## **Course Outcomes (CO)**

| CO1 | Explain the Heat exchanges, power cycles, heating equipment's, materials and processes used   |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------|--|--|--|--|--|
|     | in assembling, welding and testing of weld joints.                                            |  |  |  |  |  |
| CO2 | Select the appropriate materials, processes and fabrication techniques for welding ofpressure |  |  |  |  |  |
|     | essels, automobile components, equipment's used in oil and gas industries, and nuclear power  |  |  |  |  |  |
|     | plants.                                                                                       |  |  |  |  |  |
| CO3 | Carry out inspection and testing based on case studies, recent trends and developments and    |  |  |  |  |  |
|     | adopt stringent quality control measures in nuclear plants.                                   |  |  |  |  |  |



| Course<br>Code | Course Title                   | СО  | Course outcomes At the end of the course, students will be able                                                                                                                                     | PO1 | PO2 | PO3 |
|----------------|--------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| MT702          | Welding Application Technology | CO1 | Explain the Heat exchanges, power cycles, heating equipment's, materials and processes used in assembling, welding, and testing of weld joints.                                                     | Н   | M   | Н   |
|                |                                | CO2 | Select the appropriate materials, processes and fabrication techniques for welding ofpressure vessels, automobile components, equipment's used in oil and gas industries, and nuclear power plants. | Н   | M   | Н   |
|                |                                | CO3 | Carry out inspection and testing based on case studies, recent trends and developments and adopt stringent quality control measures in nuclear plants.                                              | Н   | M   | Н   |



| Course Code          | : | MT703                                 |
|----------------------|---|---------------------------------------|
| Course Title         | : | Repair Welding and Reclamation        |
| Type of Course       | : | PE                                    |
| Prerequisites        | : | NIL                                   |
| <b>Contact Hours</b> | : | 3                                     |
| Course Assessment    | : | Continuous Assessment, End Assessment |
| Methods              |   |                                       |

| C | LO1 | To acquire knowledge and to solve problems associated with failure and to update |
|---|-----|----------------------------------------------------------------------------------|
|   |     | personnel on the latest technology to ensure welded structure, pressure vessel,  |
|   |     | plant and machinery would be maintained in good operating condition and at low   |
|   |     | maintenance cost.                                                                |

#### **Course Content**

- Engineering aspects of repair, aspects to be considered for repair welding, technoeconomics, repair welding procedures for components made of steel casting and cast iron, half bead, temper bead techniques, usage of Ni base filler metals, Weld surfacing.
- Damaged bends in gas transmission pipeline, heat exchanger repair techniquesexplosive expansion, plugging, etc., creep damaged high-temperature components, repair of cracked petroleum pressure vessel/reactor.
- Types of wear, wear resistant materials, selection of materials for various wear applications; reclamation surfacing techniques, selection of welding process for reclamation.
- Integrating repair/maintenance into on-going operations; radiation protection, steam generator repair, plugging
- Various types of hardness tests, NDE of surface coatings, characterization of coatings, photothermal imaging, case histories on selection application/materials combination

#### References

| 1. | Dobly R.E., Kent K.S., "Repair and Reclamation", The Welding Institute, 1986 |
|----|------------------------------------------------------------------------------|
| 2. | Maintenance Welding in Nuclear Power Plants", American Welding Society, 1988 |

#### **Course Outcomes (CO)**

| CO1 | Improve the quality of welding which will benefit the industry in terms of productivity |
|-----|-----------------------------------------------------------------------------------------|
|     | and savings.                                                                            |
| CO2 | Understand the types of cracks and implement proper repair method to enhancethe         |
|     | life of welded structures like boiler, pipeline, bridges etc.                           |
| CO3 | Develop the skills to carry out practical feasible repair techniques maintaining low    |
|     | cost.                                                                                   |
| CO4 | Selection of repair welding and apply techno-economics for practical problems.          |



| Course<br>Code | Course Title                         | СО  | Course outcomes At the end of the course, students will be able                                                                               | PO1 | PO2 | PO3 |
|----------------|--------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| MT703          | Repair<br>Welding and<br>Reclamation | CO1 | Improve the quality of welding which will benefit the industry in terms of productivity and savings.                                          | Н   | M   | Н   |
|                |                                      | CO2 | Understand the types of cracks and implement proper repair method to enhancethe life of welded structures like boiler, pipeline, bridges etc. | Н   | M   | Н   |
|                |                                      | CO3 | Develop the skills to carry out practical feasible repair techniques maintaining lowcost.                                                     | Н   | M   | Н   |
|                |                                      | CO4 | Selection of repair welding and apply techno-economics for practical problems.                                                                | Н   | M   | Н   |



| Course Code          | :   | MT704                                 |
|----------------------|-----|---------------------------------------|
| Course Title         | :   | Life Assessment of Welded Structures  |
| Type of Course       | :   | PE                                    |
| Prerequisites        | :   | NIL                                   |
| <b>Contact Hours</b> | :   | 3                                     |
| Course Assessmen     | t : | Continuous Assessment, End Assessment |
| Methods              |     |                                       |

| CLO1 | To acquire knowledge in life assessment of welded structure and ability to analyse  |
|------|-------------------------------------------------------------------------------------|
|      | and apply fracture mechanics design concepts to welded structures.                  |
| CLO2 | Ability to apply fitness-for-service methods and standards for design of new andfor |
|      | life-assessment of in-service welded structures.                                    |

#### **Course Content**

- Historical evolution and operation of power plants and petrochemical plants-general description, temperature, pressures and materials, failure in plants-definition of failure
- Toughness, DBTT, LEFM, EPFM, temper embrittlement, hydrogen embrittlement, case histories, Strain gauge measurement.
- Mechanisms, parametric extrapolation techniques LM, OSD, MH, MB and MCM, design rules, cumulative damage, crack growth models, RLA methodology for bulk and localized damages
- High and low cycle fatigue, Coffin-Manson relationship, creep fatigue interaction, failure mechanism maps, thermal fatigue (TF), thermal-mechanical fatigue (TMF), thermal-mechanical fatigue life prediction, crack growth in fatigue
- Materials, damage mechanisms and RLA of boiler tubes, header, steam pipes, rotors, steam casings, valves and steam chests, steam turbine blades, high-temperature bolts. Nondestructive assessment methods.

# References

|   | 1. | Viswanathan R. "Damage Mechanisms and Life Assessment of High Temperature |  |  |  |  |
|---|----|---------------------------------------------------------------------------|--|--|--|--|
|   |    | Components", American Society for Metals", 1989.                          |  |  |  |  |
| Ī | 2. | Das A.K., 'Metallurgy of Failure Analysis', Tata McGraw Hill, 1993.       |  |  |  |  |

## **Course Outcomes (CO)**

| CO1             | An ability to select and design welding materials, processes and inspectiontechniques |  |  |  |  |  |
|-----------------|---------------------------------------------------------------------------------------|--|--|--|--|--|
|                 | based on application, fabrication and service conditions.                             |  |  |  |  |  |
| CO <sub>2</sub> | An ability to develop welding procedures that specify materials, processes and        |  |  |  |  |  |
|                 | inspection requirements.                                                              |  |  |  |  |  |
| CO3             | An ability to design welded structures and components to meet application             |  |  |  |  |  |
|                 | requirements of static and fatigue loading.                                           |  |  |  |  |  |
| CO4             | An ability to use the techniques, skills, and modern engineering tools necessaryfor   |  |  |  |  |  |
|                 | engineering practice.                                                                 |  |  |  |  |  |



| Course<br>Code | Course Title                               | СО  | Course outcomes At the end of the course, students will be able                                                                                  | PO1 | PO2 | PO3 |
|----------------|--------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| MT704          | Life assessment<br>of welded<br>structures | CO1 | An ability to select and design welding materials, processes and inspectiontechniques based on application, fabrication, and service conditions. | Н   | M   | Н   |
|                |                                            | CO2 | An ability to develop welding procedures that specify materials, processes and inspection requirements.                                          | Н   | M   | Н   |
|                |                                            | CO3 | An ability to design welded structures and components to meet application requirements of static and fatigue loading.                            | Н   | M   | Н   |
|                |                                            | CO4 | An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.                                       | Н   | M   | Н   |



| Course Code          | : | MT705                                 |
|----------------------|---|---------------------------------------|
| Course Title         | : | Welding Economics and Management      |
| Type of Course       | : | PE                                    |
| Prerequisites        | : | NIL                                   |
| <b>Contact Hours</b> | : | 3                                     |
| Course Assessment    | : | Continuous Assessment, End Assessment |
| Methods              |   |                                       |

| CLO1 | To acquire knowledge in welding economics in selection of process, consumables and |  |  |  |  |  |
|------|------------------------------------------------------------------------------------|--|--|--|--|--|
|      | work piece materials                                                               |  |  |  |  |  |
| CLO2 | To acquire knowledge in management                                                 |  |  |  |  |  |

#### **Course Content**

- Welding design, selection of electrodes, size, type and metal recovery, electrode efficiency, stub thrown away, over welding and joint, fit up welding position operation factor, jigs, fixtures, positioners, operator efficiency.
- Need for time standards, definition of standard time, various methods of computing standard time, analytical calculation, computerization of time standards.
- Definition of terms, composition of welding costs, cost of consumables, labour cost, costoverheads, formulae for total cost, cost curves for different processes like CO<sub>2</sub>, SAW, ESW, etc., mechanization in welding, job shop operation.
- Process vs product layout, construction, service consideration, employees, services, process services, etc., different workstations in shop floor and their arrangements.
- Selection and installation of equipment, safe handling of equipment, production control, planning for welding processes and materials, inventory control; basic aspects of financial management and manpower planning.

| 1  | Bathy J., "Industrial Administration and Management, 1984   |
|----|-------------------------------------------------------------|
| 2  | Pendar J. A., "Welding Projects - A Design Approach,1977    |
| 3. | Welding Institute U.K., "Standard Data for Arc Welding,1994 |



| CO1             | Know the importance of effective costing.                                           |  |  |  |
|-----------------|-------------------------------------------------------------------------------------|--|--|--|
| CO <sub>2</sub> | Know the factors influencing welding costs.                                         |  |  |  |
| CO <sub>3</sub> | Understand how to reduce welding costs and calculation of cost of a weldingproject. |  |  |  |
| CO4             | Know the meaning, importance, types and characteristics of maintenance systemand    |  |  |  |
|                 | organization of a maintenance department.                                           |  |  |  |
| CO5             | Understand and solve problems relating to calculation of welding cost of given      |  |  |  |
|                 | projects.                                                                           |  |  |  |
| CO6             | Apply management skills in details ways for reducing welding cost.                  |  |  |  |

| Course<br>Code | Course Title             | СО  | Course outcomes At the end of the course, students will be able                                                             | PO1 | PO2 | PO3 |
|----------------|--------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| MT705          | Welding<br>Economics and | CO1 | Know the importance of effective costing.                                                                                   | Н   | M   | Н   |
|                | Management               | CO2 | Know the factors influencing welding costs.                                                                                 | Н   | M   | Н   |
|                |                          | CO3 | Understand how to reduce welding costs and calculation of cost of a weldingproject.                                         | Н   | M   | Н   |
|                |                          | CO4 | Know the meaning, importance, types and characteristics of maintenance system and organization of a maintenance department. | Н   | М   | Н   |
|                |                          | CO5 | Understand and solve problems relating to calculation of welding cost of givenprojects.                                     | Н   | M   | Н   |
|                |                          | CO6 | Apply management skills in details ways for reducing welding cost.                                                          | Н   | M   | Н   |



| Course Code          |   | MT761                                 |
|----------------------|---|---------------------------------------|
| Course Title         |   | Design and Selection of Materials     |
| Type of Course       | : | OE                                    |
| Prerequisites        | : | NIL                                   |
| <b>Contact Hours</b> | : | 3                                     |
| Course Assessment    | : | Continuous Assessment, End Assessment |
| Methods              |   |                                       |

| CLO1 | To know different Principles of selecting materials and processes for engineering |
|------|-----------------------------------------------------------------------------------|
|      | applications and methodologies for designing new materials and conceiving hybrid  |
|      | solutions.                                                                        |

#### **Course Content**

- Engineering materials and their properties Technologically important properties of materials - Physical, chemical, mechanical, thermal, optical, environmental and electrical properties of materials.
- Material property charts Modulus density, strength-density, fracture toughness-strength, etc.
- Strategy for materials selection Types of design, Design tools and materials data.
   Materials selection without shape, Materials selection involving multiple constraints and/or conflicting objectives, Methodology for selection of materials Collection of data on availability, requirements and non-functional things- its importance to the situations case studies
- Selection of material and shape Materials and shape microscopic and micro structural shape factors limit to shape efficiency Comparison of structural sections and material indices case studies
- Material processes and process selection Classifying process -- systematic selection of process -- Selection charts -- Ranking of processes -- case studies -- Influence of manufacturing aspects and processing route on properties of materials and its influence on selection of materials -- case studies -- e.g. Automotive, Nuclear, and Aerospace components.

#### References

| 1. | M.F. Ashby, "Materials Selection in Mechanical Design' – Third edition, Elsevierpublishers,    |
|----|------------------------------------------------------------------------------------------------|
|    | Oxford, 2005.                                                                                  |
| 2. | Gladius Lewis, "Selection of Engineering Materials", Prentice Hall Inc, New Jersey, USA, 1995. |
| 3. | Charles.J.A. and Crane, F.A.A., "Selection and Use of Engineering Materials", Butterworths,    |
|    | London, UK, 1989                                                                               |

#### **Course Outcomes (CO)**

| CO1 | Understand types of materials and properties.                             |  |  |
|-----|---------------------------------------------------------------------------|--|--|
| CO2 | Know different methods for materials selection.                           |  |  |
| CO3 | Know different methods for process selection.                             |  |  |
| CO4 | Selection of materials for Specific engineering applications and process. |  |  |



| Course<br>Code | Course Title            | СО  | Course outcomes At the end of the course, students will be able             | PO1 | PO2 | PO3 |
|----------------|-------------------------|-----|-----------------------------------------------------------------------------|-----|-----|-----|
| MT761          | Design and Selection of | CO1 | Understand types of materials and properties.                               | Н   | L   | M   |
|                | Materials               | CO2 | Know different methods for materials selection.                             | Н   | L   | L   |
|                |                         | CO3 | Know different methods for process selection.                               | Н   | L   | M   |
|                |                         | CO4 | Selection of materials for Specific engineering applications and processes. | M   | M   | Н   |



| Course Code          | :   | MT762                                      |
|----------------------|-----|--------------------------------------------|
| Course Title         |     | Statistical Quality Control and Management |
| Type of Course       | :   | OE                                         |
| Prerequisites        | :   | NIL                                        |
| <b>Contact Hours</b> | :   | 3                                          |
| Course Assessmen     | t : | Continuous Assessment, End Assessment      |
| Methods              |     |                                            |

| CLO1 | To learn the concepts of quality control and quality management and their |
|------|---------------------------------------------------------------------------|
|      | applications related to the manufacture of metallurgical products.        |

#### **Course Content**

- Quality philosophy; cost of quality; overview of the works of Juran, Deming, Crosby, Taguchi; quality loss function; PDCA cycle; quality control; quality assurance; quality audit; vendor quality assurance.
- Quality organization; quality management; quality system; total quality management; quality awards; quality certification; typical procedure for ISO 9000, ISO 14000, QS 9000.
- Review of some calculation procedures involving statistics and probability; exposure
  to some applications of statistics and probability; distribution functions; normal
  distribution curve.
- Variations; analysis of variance statistical tools statistical quality control; control charts; process capability analysis; statistical process control; introduction to six sigma
- Inspection; inspection by sampling; acceptance sampling; statistical approaches; single, double, and multiple sampling plans; statistical design of experiments.

## References

| 1. | Hansen B.L., P.M. Ghare, 'Quality Control and Application', PHI – EEE, 1997.        |
|----|-------------------------------------------------------------------------------------|
| 2. | Juran J.M., and F.M. Gryna, 'Quality Planning and Analysis', McGraw Hill, New York, |
|    | 2 <sup>nd</sup> Edition, 1980                                                       |

#### **Course Outcomes (CO)**

At the end of the course student will be able

| CO1 | Understand the basic concepts in quality control and management.                   |  |  |  |  |
|-----|------------------------------------------------------------------------------------|--|--|--|--|
| CO2 | Learn the statistics and probability and distribution functions related to quality |  |  |  |  |
|     | management.                                                                        |  |  |  |  |
| CO3 | Understand the process of inspection, sampling and their statistical approach in   |  |  |  |  |
|     | quality management in industry.                                                    |  |  |  |  |



| Course<br>Code | Course Title           | СО  | Course outcomes At the end of the course, students will be able                                                  | PO1 | PO2 | PO3 |
|----------------|------------------------|-----|------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| MT762          | Statistical<br>Quality | CO1 | Understand the basic concepts in quality control and management.                                                 | Н   | L   | L   |
|                | Control and Management | CO2 | Learn the statistics and probability and distribution functions related to qualitymanagement.                    | Н   | L   | Н   |
|                |                        | CO3 | Understand the process of inspection, sampling and their statistical approach in quality management in industry. | Н   | L   | M   |



| Course Code          | : | MT763                                 |
|----------------------|---|---------------------------------------|
| Course Title         |   | Intellectual Property Rights          |
| Type of Course       | : | OE                                    |
| Prerequisites        | : | NIL                                   |
| <b>Contact Hours</b> | : | 3                                     |
| Course Assessment    | : | Continuous Assessment, End Assessment |
| Methods              |   |                                       |

#### **Course Content**

- Introduction to Intellectual Property Law The Evolutionary Past The IPR Tool Kit-Para -Legal Tasks in Intellectual Property Law Ethical obligations in Para Legal Tasks in Intellectual Property Law Introduction to Cyber Law Innovations and Inventions Trade related Intellectual Property Right.
- Introduction to Trademark Trademark Registration Process Post registration Procedures – Trademark maintenance - Transfer of Rights - Inter partes Proceeding – Infringement - Dilution Ownership of Trademark – Likelihood of confusion -Trademarks claims – Trademarks Litigations – International Trademark Law
- Introduction to Copyrights Principles of Copyright Principles The subjects Matter of Copyright The Rights Afforded by Copyright Law Copy right Ownership, Transfer, and duration.
- Right to prepare Derivative works Rights of Distribution Rights of Perform the
  work Publicity Copyright Formalities and Registrations Limitations Copyright
  disputes and International Copyright Law Semiconductor Chip Protection Act
- Introduction to Trade Secret Maintaining Trade Secret Physical Security Employee Limitation - Employee confidentiality agreement - Trade Secret Law - Unfair Competition
- Trade Secret Litigation Breach of Contract Applying State Law. Geographic indication
- Managing intellectual property in a knowledge-based society. IPR and technology transfer, case studies.

### References

| 1 | Debirag E. Bouchoux: "Intellectual Property". Cengage learning, New Delhi      |   |
|---|--------------------------------------------------------------------------------|---|
| 2 | M. Ashok Kumar and Mohd. Iqbal Ali: "Intellectual Property Right" Serials Pub. |   |
| 3 | Cyber Law. Texts & Cases, South-Western's Special Topics Collections           |   |
| 4 | Prabuddha Ganguli: 'Intellectual Property Rights' Tata Mc-Graw –Hill, New Delh | i |

### **Course Outcomes (CO)**

At the end of the course student will be able

| CO1 | Understand the different types of IPR.                                          |  |  |  |  |
|-----|---------------------------------------------------------------------------------|--|--|--|--|
| CO2 | Study the fundamentals of IPR laws.                                             |  |  |  |  |
| CO3 | Understand scope of patent, copy right, geographic indication and trade secret. |  |  |  |  |



| Course<br>Code | Course Title       | СО  | Course outcomes At the end of the course, students will be able                 | PO1 | PO2 | PO3 |
|----------------|--------------------|-----|---------------------------------------------------------------------------------|-----|-----|-----|
| MT763          | Intellectual       | CO1 | Understand the different types of IPR                                           | Н   | L   | M   |
|                | Property<br>Rights | CO2 | Study the fundamentals of IPR laws                                              | Н   | L   | Н   |
|                | Rights             | CO3 | Understand scope of patent, copy right, geographic indication and trade secrete | Н   | L   | L   |



| Course Code          | : | MT764                                 |
|----------------------|---|---------------------------------------|
| Course Title         | : | Innovation and Product Development    |
| Type of Course       | : | OE                                    |
| Prerequisites        | : | NIL                                   |
| <b>Contact Hours</b> | : | 3                                     |
| Course Assessment    | : | Continuous Assessment, End Assessment |
| Methods              |   |                                       |

| CLO1 | To uunderstand customer needs and demand for new products. |  |  |  |  |  |  |  |  |
|------|------------------------------------------------------------|--|--|--|--|--|--|--|--|
| CLO2 | To train for design thinking for new products              |  |  |  |  |  |  |  |  |
| CLO3 | To know various IPR issues in new product development      |  |  |  |  |  |  |  |  |

### **Course Content:**

- Understanding Customer Needs, Organizing Product Development, and New Product Strategy and Creating Demand for New Products
- Quantitative Methods for materials selection and Cost–Benefit Analysis
- Design for Manufacturing (DFM); Role of DFM in product specification and standardization
- Introduction to Intellectual Property and issues in new Product Development
- Case studies and minor project

### References

| 1. | Drew Boyd & Jacob Goldenberg (2013) Inside the Box: The Creative Method that Works for                                                                              |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Everyone                                                                                                                                                            |
| 2. | Joseph V. Sinfield, Edward Calder, Bernard McConnell, and Steve Colson (2012)<br>How to Identify New Business Models, MIT Sloan Management Review Vol. 53,<br>No.2. |
| 3  | Karl T. Ulrich, Steven D. Eppinger, Maria C. Yang (2020) Product Design and Development, 7th Edition                                                                |
| 4  | ASTM Design handbook.                                                                                                                                               |

## **Course Outcomes (CO)**

Upon completion of this class, students are expected to.

| CO1             | Understand the customer expectations and requirements for new products |  |  |  |  |  |  |
|-----------------|------------------------------------------------------------------------|--|--|--|--|--|--|
| CO <sub>2</sub> | Inderstand the methods of materials selection for new products         |  |  |  |  |  |  |
| CO3             | olve social problems by new products development                       |  |  |  |  |  |  |
| CO4             | Learn for new product development and launch                           |  |  |  |  |  |  |



| Course<br>Code | Course Title           | СО  | Course outcomes At the end of the course, students will be able        | PO1 | PO2 | PO3 |
|----------------|------------------------|-----|------------------------------------------------------------------------|-----|-----|-----|
| MT764          | Innovation and Product | CO1 | Understand the customer expectations and requirements for new products | Н   | M   | Н   |
|                | Development            | CO2 | Understand the methods of materials selection for new products         | Н   | M   | Н   |
|                |                        | CO3 | Solve social problems by new products development                      | Н   | M   | Н   |
|                |                        | CO4 | Learn for new product development and launch                           | Н   | M   | Н   |



| Course Code       | : | MT 765                                |
|-------------------|---|---------------------------------------|
| Course Title      |   | Energy Storage Systems                |
| Type of Course    | : | OE                                    |
| Prerequisites     |   | NIL                                   |
| Contact Hours     |   | 3                                     |
| Course Assessment | : | Continuous Assessment, End Assessment |
| Methods           |   |                                       |

| CLO1 | CLO1 To become familiarize with energy demands                        |  |  |  |  |  |  |
|------|-----------------------------------------------------------------------|--|--|--|--|--|--|
| CLO2 | Acquire insights on various energy storage systems                    |  |  |  |  |  |  |
| CLO3 | CLO3 Study materials used in various energy storage systems           |  |  |  |  |  |  |
| CLO4 | Gain insights on futuristic technologies viable for commercialization |  |  |  |  |  |  |

### **Course Content**

- Energy Storage Systems: Introduction Energy Demand in India and Sources -Renewable Energy Sources - Power Density Vs. Energy Density - Energy Storage Systems Including Batteries, Supercapacitors, Fuel Cells, and Hydrogen Storage
- Batteries: Primary And Secondary Batteries (Lithium-Ion, Sodium-Ion, Metal-Air/O2/Co2 Batteries) Working Mechanisms Battery Components (Cathode, Anode, Electrolyte, Casing Materials) Nanostructured Materials for Batteries (Carbon-Based and Metal Oxide/Metal Sulphide/MOFs/COFs/MXenes)
- Supercapacitors Electrical Double Layer Model Principles & Design for EDLC And Pseudo capacitors- Material Prospects - Status & Future Trends. Fuel Cells - Principles for Different Fuel Cells and Materials - Issues & Challenges in Fuel Cells. Hydrogen Storage Methods and Materials- Production and Energy Conversion
- Prospects Discussing Viable Technologies for Commercialization with Emphasis on Environmental Impact, Cost, Efficiency, Advantages, Disadvantages, and Applicability - Integration in Electric Vehicle and Smart Grids.

#### **References:**

- 1. Braun, A. Electrochemical energy systems: foundations, energy storage and conversion. Walter de Gruyter GmbH & Co KG. (2018)
- 2. Paul, Rajib, Vinodkumar Etacheri, Yan Wang, and Cheng-Te Lin, eds. Carbon based nanomaterials for advanced thermal and electrochemical energy storage and conversion. Elsevier, (2019).
- 3. Hirose, Katsuhiko. Handbook of hydrogen storage: new materials for future energy storage. John Wiley & Sons, (2010).
- 4. Allen J. Bard and Larry R. Faulkner, Electrochemical methods: Fundamentals and Applications, 2ndEdition John Wiley & Sons. Inc (2004)
- 5. San Ping Jiang, Qingfeng Li, Introduction to Fuel Cells Electrochemistry and Materials, Springer Singapore (2021)



# Course Outcomes (CO)

At the end of the course, students will be able to

|     | The time of the course, students will be unit to                       |  |  |  |  |  |  |
|-----|------------------------------------------------------------------------|--|--|--|--|--|--|
| CO1 | CO1 Learn about energy demands and various energy storage systems      |  |  |  |  |  |  |
| CO2 | Understand various battery chemistries and their future prospects      |  |  |  |  |  |  |
| CO3 | Select and design materials for energy storage systems                 |  |  |  |  |  |  |
| CO4 | Understand Hydrogen production and materials used for hydrogen storage |  |  |  |  |  |  |

| Course<br>Code | Course<br>Title   | СО  | Course outcomes At the end of the course, students will be able        | PO1 | PO2 | PO3 |
|----------------|-------------------|-----|------------------------------------------------------------------------|-----|-----|-----|
| MT765          | Energy<br>Storage | CO1 | Learn about energy demands and various energy storage systems          | Н   | L   | M   |
|                | Systems           | CO2 | Understand various battery chemistries and their future prospects      | Н   | M   | L   |
|                |                   | CO3 | Select and design materials for energy storage systems                 | Н   | M   | Н   |
|                |                   | CO4 | Understand Hydrogen production and materials used for hydrogen storage | Н   | M   | L   |



| Course Code       | : | MT766                                            |
|-------------------|---|--------------------------------------------------|
| Course Title      |   | Artificial Intelligence in Materials Engineering |
| Type of Course    | : | OE                                               |
| Prerequisites     |   | NIL                                              |
| Contact Hours     |   | 3                                                |
| Course Assessment | : | Continuous Assessment, End Assessment            |
| Methods           |   |                                                  |

To explore the scope of artificial intelligence (AI) in materials engineering and research

### **Course Content:**

(Considering that AI in Materials Engineering and Research is an emerging field, the following syllabus is intended to provide an outline for the instructor. This syllabus can be suitably navigated to accommodate the recent and relevant advancements.)

- Basics of AI Mathematical Foundation, History and Evolution; Need for AI in Materials Engineering and Research – Data Analysis, Factor Analysis, Image Analysis, Material Discovery
- Machine Learning as a subset of AI Introduction, Types of Data; Supervised Learning Basics, Regression, Linear and Non-Linear Regression, Gradient Descent, Logistic Regression; Unsupervised Learning Clustering; Reinforced Learning
- Deep Learning Introduction; Neural Networks Feedforward, Backpropagation and Parameters; Types Convolutional and Recurrent Neural Networks; Autoencoders
- Quantitative Microstructure Analysis Computer Vision, Segmentation, Classification, Object Detection and Counting; Data Visualization – Introduction, Types and Techniques
- Leading up to Industry 4.0 Need, Introduction, Significance and Relevance

## **References:**

- 1. Artificial Intelligence A Modern Approach, Stuart Russell, Pearson Publication, 3<sup>rd</sup> Edition, 2015.
- 2. Basics of Artificial Intelligence and Machine Learning, Deeraj Mehrotra, Notion Press, 2019.
- 3. Artificial Intelligence by Example, Dennis Rothman, Packt Publishing, 2020

# **Course Outcomes (CO)**



At the end of the course, students will be able to

| CO <sub>1</sub> | Understand the mathematical foundation, history, and evolution of AI, and grasp its necessity in        |
|-----------------|---------------------------------------------------------------------------------------------------------|
|                 | materials engineering for tasks such as data analysis, factor analysis, image analysis, and material    |
|                 | discovery.                                                                                              |
| CO2             | Gain knowledge of supervised learning, including regression techniques, gradient descent, and           |
|                 | logistic regression, as well as unsupervised learning methods like clustering, and understand the       |
|                 | basics of reinforced learning, applying these techniques to analyze and interpret data relevant to      |
|                 | materials engineering.                                                                                  |
| CO3             | Introduce neural networks, including feedforward and backpropagation, learn about convolutional         |
|                 | and recurrent neural networks, and autoencoders, and apply deep learning methods to tasks such as       |
|                 | computer vision, segmentation, classification, object detection, and counting.                          |
| CO4             | Understand the significance and relevance of Industry 4.0 in the context of AI in materials             |
|                 | engineering, learn various data visualization techniques to effectively present and interpret data, and |
|                 | be equipped to use AI-driven approaches to enhance materials engineering practices                      |

| Course<br>Code | Course<br>Title                                           | СО  | Course outcomes At the end of the course, students will be able                                                                                                                                                                                                                                                           | PO1 | PO2 | PO3 |
|----------------|-----------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| MT766          | Artificial<br>Intelligence<br>in Materials<br>Engineering | CO1 | Understand the mathematical foundation, history, and evolution of AI, and grasp its necessity in materials engineering for tasks such as data analysis, factor analysis, image analysis, and material discovery.                                                                                                          | Н   | L   | M   |
|                |                                                           | CO2 | Gain knowledge of supervised learning, including regression techniques, gradient descent, and logistic regression, as well as unsupervised learning methods like clustering, and understand the basics of reinforced learning, applying these techniques to analyze and interpret data relevant to materials engineering. | Н   | L   | M   |
|                |                                                           | CO3 | Introduce neural networks, including feedforward and backpropagation, learn about convolutional and recurrent neural networks, and autoencoders, and apply deep learning methods to tasks such as computer vision, segmentation, classification, object detection, and counting.                                          | Н   | M   | M   |
|                |                                                           | CO4 | Understand the significance and relevance of Industry 4.0 in the context of AI in materials engineering, learn various data visualization techniques to effectively present and interpret data, and be equipped to use AI-driven approaches to enhance materials engineering practices                                    | Н   | L   | Н   |



| Course Code                  | : | MT767                                 |
|------------------------------|---|---------------------------------------|
| Course Title                 |   | Molecular Modeling of Materials       |
| Type of Course               | : | OE                                    |
| Prerequisites                | : | Nil                                   |
| <b>Contact Hours</b>         | : | 3                                     |
| Course Assessment<br>Methods | : | Continuous Assessment, End Assessment |

To become familiar with the basic concepts electronic scale and atomic scale modelling techniques useful in materials research.

### **Course Content**

- Quantum Mechanics Basic concepts, Schrödinger wave equation, assumptions and approximations, brief introduction to first principle/ab initio methods, applications in materials research
- Density functional theory Electron density, energy terms, exchange correlation functionals, Generalized gradient approximation (GGA), Pseudopotential, DFT exercises.
- Molecular dynamics Introduction Classical mechanics, molecular statics, molecular dynamics; interatomic potentials, Solution for Newton's equations of motion – different algorithms.
- Molecular dynamics Initialization and Integration, energy minimization, estimation
  of thermodynamic properties, structural properties, thermal properties, MD simulations
  using LAMMPS.
- Monte Carlo methods Introduction, ensembles, algorithms, monte Carlo for atomic systems, Modified monte Carlo Methods-Kinetic Monte Carlo method, Applications of Monte Carlo simulations in different material systems, nucleation, and grain growth.

#### References

| 1. | Lesar, R., Introduction to computational materials science: Fundamentals to applications, Cambridge University Press, UK, 2013.                                |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | Lee, J.G., Computational Materials Science: An Introduction, CRC Press, Boca Raton, 2017                                                                       |
| 3. | Ohno K, Esfarjani k, Kawazoe Y, Computational materials science: From ab-initio to monte carlo methods, 2 <sup>nd</sup> Ed, Springer-Verlag GmbH Germany, 2018 |



# **Course Outcomes (CO)**

At the end of the course student will be able

| CO1 | To perform density functional theory simulations to obtain various material       |  |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------|--|--|--|--|--|--|
|     | properties                                                                        |  |  |  |  |  |  |
| CO2 | To understand the principles of molecular dynamics simulations and their          |  |  |  |  |  |  |
|     | fundamentals                                                                      |  |  |  |  |  |  |
| CO3 | To perform molecular dynamics simulations for obtaining thermodynamic, structural |  |  |  |  |  |  |
|     | and thermal properties of different materials.                                    |  |  |  |  |  |  |
| CO4 | To apply the Monte Carlo simulation methods in materials research.                |  |  |  |  |  |  |

| Course<br>Code | Course Title                          | СО  | Course outcomes At the end of the course, students will be able                                                                  | PO1 | PO2 | PO3 |
|----------------|---------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| MT767          | Molecular<br>Modeling of<br>Materials | CO1 | To perform density functional theory simulations to obtain various material properties                                           | M   | M   | M   |
|                |                                       | CO2 | To understand the principles of molecular dynamics simulations and their fundamentals                                            | Н   | L   | Н   |
|                |                                       | CO3 | To perform molecular dynamics simulations for obtaining thermodynamic, structural and thermal properties of different materials. | Н   | M   | Н   |
|                |                                       | CO4 | To apply the Monte Carlo simulation methods in materials research.                                                               | M   | M   | M   |