M.Tech Degree

in

INDUSTRIAL METALLURGY

SYLLABUS

FOR

CREDIT BASED CURRICULUM

(For the students admitted in the year 2024)

DEPARTMENT OF METALLURGICAL AND MATERIALS
ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY
TIRUCHIRAPPALLI - 620 015
TAMIL NADU, INDIA

VISION OF THE INSTITUTE

• To be a university globally trusted for technical excellence where learning and research integrate to sustain society and industry.

MISSION OF THE INSTITUTE

- To offer undergraduate, postgraduate, doctoral and modular programmes in multi-disciplinary / inter-disciplinary and emerging areas.
- To create a converging learning environment to serve a dynamically evolving society.
- To promote innovation for sustainable solutions by forging global collaborations with academia and industry in cutting-edge research.
- To be an intellectual ecosystem where human capabilities can develop holistically.

VISION OF THE DEPARTMENT

To evolve into a globally recognized department in the frontier areas of Metallurgical and Materials Engineering.

MISSION OF THE DEPARTMENT

- To produce Metallurgical and Materials Engineering graduates having professional excellence.
- To carry out quality research having social & industrial relevance.
- To provide technical support to budding entrepreneurs and existing industries

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1	Choose their careers as practicing metallurgist in manufacturing and service
	industries.
PEO2	Enable them to make consistent progress towards a higher degree in
	Metallurgical engineering and allied fields.
PEO3	To work and participate in multidisciplinary environments as well as to develop
	entrepreneur skills

PROGRAMME OUTCOMES (POs)

P01	An ability to independently carry out research /investigation and development work to solve practical problems
PO2	An ability to write and present a substantial technical report/document
PO3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program

CURRICULUM FRAMEWORK / FLEXIBLE CURRICULUM / NEP 2020 / M.Tech

Components	Number of Courses	Number of Credits	Senate Suggestions
Programme Core (PC)	3 / Semester (6 / Year)		4 or 3 credits can be the combination of
Programme Elective (PE)	3 / Semester (6 / Year)	44	Programme Core (PC) and Programme Elective (PE)
Essential Laboratory Requirements (ELR)	2 / Year	4	2 Credits / ELR (If the department opts for 2 Essential Laboratory Requirements (ELR) per year, totaling 4 credits, the remaining 2 credits can be allocated to PC or PE courses)
Internship / Industrial Training / Academic Attachment (I/A)	1	2	-
Open Elective (OE) / Online Course (OC)	2	6	Open Elective (OE) / Online Course (OC) can be completed between 1 - 4 Semester
Project Phase-I	1	12	-
Project Phase-II	1	12	-
Total	20	80	-

CURRICULUM

SEMESTER I

Code	Course of Study	Credit
MA613	Programme Core 1: Engineering Mathematics	4
MT641	Programme Core 2: Foundry Technology	4
MT643	Programme Core 3: Welding Technology	4
	Programme Elective I	4
	Programme Elective II	3
	Programme Elective III /Online (NPTEL)	3
MT649	Laboratory I: Microstructure characterization and Material Testing Laboratory	2
		24

SEMESTER II

Code	Course of Study	Credit
MT642	Programme Core 4: Industrial Heat treatment	4
MT644	Programme Core 5: Foundry Metallurgy	4
MT646	Programme Core 6: Metal Forming	4
	Programme Elective IV	4
	Programme Elective V	3
	Programme Elective VI /Online (NPTEL)	3
MT650	Laboratory II: Advanced Materials Processing Laboratory	2
		24

SUMMER TERM (evaluation in the III semester)

Code	Course of Study	Credit
MT656	Internship / Industrial Training / Academic Attachment (I/A) (6	2
	weeks to 8 weeks)	

SEMESTER III

Code	le Course of Study	
MT657	Project Work (Phase I)	12

SEMESTER IV

Code	Course of Study	Credit
MT658	Project Work (Phase II)	12

SEMESTER I-IV

Code	Course of Study	Credit
	Open Elective I	3
	Open Elective II	3
		6

PROGRAMME ELECTIVES (PE)

SI. No.	Code	Course of Study	Credit		
	PE courses for all three specializations				
1. MT661 Physic		Physical Metallurgy	4		
2.	MT662	Testing, Inspection and Characterization	4		
3.	MT663	Mechanical Behavior of Materials	3		
4.	MT664	Corrosion Engineering	3		
5.	MT665	Computational Techniques	3		
6.	MT666	Metallurgical Failure Analyses	3		
7.	MT667	Surface Engineering	3		
8.	MT668	Modeling in Materials processing	3		
9.	MT669	Automotive Materials	3		
10.	MT670	Nanomaterials and Technology	3		
11.	MT671	Advanced Electrochemical Techniques	3		
12.	MT672	Developments in Iron-Making and Steel-Making	3		
13.	MT673	Additive Manufacturing	3		
14.	14. MT674 Phase Transformations		3		
15.	MT675	Crystallography	3		
16.	MT676	Particulate Technology	3		
17.	MT677	Process Modeling	3		
18.	MT678	Advanced Material Characterization Techniques	3		
19.	MT679	Non-Destructive Testing	3		
		PE courses for IM specialization			
1.	MT741	Stainless steel technology	3		
2.	MT742	Design of castings & weldments	3		
3.	MT743	Advanced materials processing	3		
4.	MT744	Special Casting Processes	3		
5.	MT745	Special topics in metal forming	3		
6.	MT746	Thermodynamics of Solidification	3		
7.	MT747	Modeling and Simulation for Metal Processing	3		

OPEN ELECTIVES (OE) / ONLINE COURSE (OC) (To be completed between I to IV semester)

SI. No.	Code	Course of Study	Credit		
1.	MT761	Design and Selection of Materials	3		
2.	MT762	Statistical Quality Control and Management	3		
3.	MT763	Intellectual Property Rights	3		
4.	MT764	Innovation and Product Development	3		
5.	MT765	Energy Storage Systems	3		
6.	MT766	Artificial Intelligence in Materials Engineering	3		
7.	MT767	Molecular Modeling of Materials	3		
	OE for MSE and/or WE				
1.	MT741	Stainless steel technology	3		
2.	MT742	Design of castings & weldments	3		
3.	MT743	Advanced materials processing	3		
4.	MT744	Special Casting Processes	3		
5.	MT745	Special topics in metal forming	3		
6.	MT746	Thermodynamics of Solidification	3		
7.	MT747	Modeling and Simulation for Metal Processing	3		

Syllabus

Course Code		MA613
Course Title		ENGINEERING MATHEMATICS
Type of Course		PC
Prerequisites		NIL
Contact Hours		4
Course Assessment		Continuous Assessment, End Assessment
Methods		

Course Learning Objectives (CLO)

CLO1	To make the students mathematically strong for solving engineering and scientific
	problems
CLO2	To train students with mathematical aspects so as to comprehend, analyse, design and
	create novel products and solution for the reallife problems.
CLO3	To familiarize the students with Euler-Lagrange's equation and fundamental concepts in
	calculus of variations.

Course Content

- Partial Differential equations basic concepts One dimensional heat flow equation Twodimensional heat flow equation in steady flow in Cartesian and Polar coordinates.
- Calculus of variations Euler's equation Variational problems in parametric form Natural boundary condition Conditional Extremum Isoperimetric problems.
- Numerical Solution of ODE's Euler's, Taylor's and Runge Kutta methods Milne's and Adams' predictor-corrector methods.
- Finite difference scheme for elliptic, parabolic, and hyperbolic partial differential equations.
- Introduction to Finite Element Method Rules for forming interpolation functions Shape functions Application to fluid flow and heat transfer problems.

References

1.	Desai, C.S. and Abel, J. P., Introduction to Finite Element Method, Van NostrandReinhold.
2.	Elsegolts, L., Differential Equations and the Calculus of Variations, Mir Publishers.
3.	Grewal, B.S., Higher Engineering Mathematics, Khanna Publishers.
4.	Reddy, J.N., Introduction to Finite Element Method, Mcgraw Hill.
5.	Jain, M.K., Iyengar, S.R. and Jain, R.K., Numerical Methods for Scientific and Engineering
	Computation, Wiley Eastern, 2010
6.	Veerarajan, T., Numerical Methods, Volume III, Tata McGraw Hill Edition, New Delhi, 2009.

Course Outcomes (CO)

CO1	To identify, formulate and solve engineering problems such as one dimensional and two- dimensional heat transfer problems.
CO2	Formulate and solve variational problems in parametric form, Ostrogradsky equation and isoperimetric problems
CO3	Compute numerical solution of ordinary differential equations using various numerical techniques
CO 4	Discretize and solving the partial differential equations associated with general engineering problems using finite difference scheme.
CO5	Apply advanced numerical method such as finite element method to solve heat transfer problems.

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	PO1	PO2	PO3
MA613	Engineering Mathematics	CO1	To identify, formulate and solve engineering problems such as one dimensional and two-dimensional heat transfer problems.	Н	L	Н
		CO2	Formulate and solve variational problems in parametric form, ostrogradsky equation and isoperimetric problem	Н	L	Н
		CO3	Compute numerical solution of ordinary differential equations using various numerical techniques	Н	L	М
		CO4	Discretize and solving the partial differential equations associated with general engineering problems using finite difference scheme.	H	L	Н
		CO5	Apply advanced numerical method such as finite element method to solve heat transfer problems	Н	L	Н

Course Code	:	MT641
Course Title	:	Foundry Technology
Type of Course	:	Program core
Prerequisites	:	NIL
Contact Hours	:	4
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	Gain knowledge of the concepts, operating procedures, applications, advantages and
	limitations of various furnaces used in foundry shop.
CLO2	To know various metals casting process
CLO3	To understand the casting design
CLO4	To know various casting defects, its causes and remedies

Course Content

Understanding concepts of Solidification of metal casting. Types, design of patterns, Allowances material selection, manufacture of patterns

Classification of moulding processes, mould materials, basic requirement of mould sands, preparation of mould sands, bonds formed in moulding aggregates, Resin binder processes, Sand mouldings – Bonded sand moulds and unbonded sand moulds. Core making processes, plaster moulding processes, ceramic moulding processes, investment casting processes, graphite moulding processes, permanent mould casting processes, die casting processes, types of centrifugal casting processes, continuous casting processes, new casting processes – Squeeze casting, semi solid metal casting, directional solidification processes, CLA process, Thixocasting and Rheocasting processes.

Construction use and operation of electric arc furnace [Direct and Indirect Arc], resistance furnace - core and core less induction, cupola, rotary and crucible furnaces.

Layout, mechanization and automation, fettling, inspection and pollution control.

Casting design and simulation, methoding, Gating and Risering calculations, improvement of yield and efficiency, simple problems in gating and risering for steels and cast irons. Solidification and simulation of metal casting, Phase field modeling, Casting defects Identification, analysis and Remedies

References

		Heine R. W., Loper C. R., Rosenthal P. C., 'Principles of Metal Casting',2 nd Edition,
	١.	Tata McGraw Hill Publishers, 1985
Ī	2	Jain P. L. 'Principles of Foundry Technology' 3rd Edition, Tata McGraw Hill, 1995

Course Outcomes (CO)

CO1	Know the furnaces used in the production of metals and alloys
CO2	Understand melting practice that takes place in the different furnaces
CO3	Describe different types of molding, casting and solidification processes
CO4	Differentiate between the different casting processes and their end products
CO5	Develop designs for engineering components produced via against defects

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	PO1	PO2	PO3
MT641	Foundry Technology	CO1	know the furnaces used in the production of metals and alloys	Ι	L	М
		CO2	Understand the melting practice that takes place in the different furnaces	Η	L	М
		CO3	Describe different types of molding, casting and solidification processes	М	L	М
		CO4	Differentiate between the different casting processes and their end products	Н	L	Н
		CO5	Develop designs for engineering components produced via against defects	M	L	М

Course Code	:	MT642
Course Title	:	Industrial Heat treatment
Type of Course	:	Program core
Prerequisites	:	NIL
Contact Hours	:	4
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To know the principles of heat treatment processes				
CLO2	Gain knowledge on various heat treatment processes				
CLO3	To know the applications of various heat treatment processes for ferrous and non-ferrous				
	alloys				
CLO4	To gain knowledge on various heat treatment defects, its causes, and remedies				

Course Content:

Principles of Heat treatment: Purpose of alloying, effect of alloying elements on ferrite, cementite, Fe-Fe3C system, tempering and TTT Curves, Austenitic Transformation, Pearlitic Transformation, Bainitic Transformation, Martensitic Transformation

Chemical and Thermo mechanical heat treatment: Annealing, Normalizing, Hardening, mechanism of heat removal during quenching, quenching media, size and mass effect, hardenability, tempering, austempering. Carburizing, cyaniding, plasma nitriding, flame and induction hardening, residual stresses, deep freezing, thermo mechanical treatments: HTMT, LTMT, Ausforming, Isoforming, Cryoforming.

Heat treatment of Ferrous alloys: Heat treatment of Plain carbon, Alloy and structural steels and Cast Iron

Non-ferrous metals and alloys: Precipitation hardening, aging treatment, study of copper, aluminum, Mg and nickel and their alloys Furnaces: Heat treatment furnaces and their design, atmosphere control vacuum heat treatment etc.

Defects in Heat treatment and their remedies, Economics of heat treatment

References

	Heat Treatment Principle and Techniques by Rajan,Sharma
2	Principles of Heat treatment of steels by R C Sharma, New Age International, 2007
3	The steel Handbook by AlokNayar, McGraw-Hill Education, 2001

Course Outcomes:

CO1	Understand the principle of heart treatment processes
CO2	Understand the types heat treatment processes
CO3	Understand the effect heat treatment on microstructure and mechanical properties of
	ferrous and non-ferrous alloys
CO4	Know the use of various heat treatment furnaces
CO5	Understand various heat treatment defects, causes, and remedies

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	PO1	PO2	PO3
MT642	Industrial Heat	CO1	Understand the principle of heat treatment processes	M	L	Н
	treatment	CO2	Understand the types heat treatment processes	Η	Г	Η
		CO3	Understand the effect heat treatment on microstructure and mechanical properties of ferrous and non-ferrous alloys		L	Н
		CO4	Know the use of various heat treatment furnaces	М	L	М
		CO5	Understand various heat treatment defects, causes, and remedies	M	L	Н

Course Code	:	MT643
Course Title	:	Welding Technology
Type of Course	:	Program core
Prerequisites	:	NIL
Contact Hours	:	4
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To know the concepts of different materials joining technology and emphasis on
	underlying science and engineering principle of every processes.
CLO2	To understand the weldability of different alloys
CLO3	To know various welding defects, its causes and remedies

Course Content:

Classification of welding processes, energy sources used in welding, working principle, advantages, limitations of arc welding processes –MMAW, GTAW, GMAW, SAW, ESW & EGW

Working principle, advantages and limitations of solid-state welding processes. - Friction, friction stir, explosive, diffusion and ultrasonic welding.

Working principle, advantages and limitations of power beam processes: Plasma arc welding, electron beam & laser beam welding.

Principles of operation, process characteristics, types and applications – Resistance welding, Gas welding, brazing, soldering and joining of non-metallic materials.

Welding metallurgy: Introduction, thermal cycles, prediction of peak temperature, pre heat and cooling rate, PWHT. Weldability of carbon steel, stainless steel & aluminum. Hot & cold cracking phenomenon, weld defects, causes and their remedies

References

	1.	Parmer R. S., 'Welding Engineering and Technology', Khanna Publishers, 1997						
Ī	2.	Robert W Messler, Jr. "Principles of welding, Processes, physics, chemistry and						
		metallurgy", Wiley,2004.						
	3.	Larry Jeffus, "Welding Principles and Applications" Fifth edition, Thomson, 2002						

Course Outcomes (CO)

CO1	Understand the working principle, merits and demerits of different joining processes
CO2	Understand the working principle and importance of welding allied processes
CO3	Solve welding heat flow related problems
CO4	Learn weldability and welding related problems of different materials

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	PO1	PO2	PO3
MT643	Welding Technology	CO1	Understand the working principle, merits and demerits of different joining processes	M		М
		CO2	Understand the working principle and importance of welding allied processes	M	L	M
		CO3	Solve welding heat flow related problems	М	L	L
		CO4	Learn weldability and welding related problems of different materials	Н	L	Η

Course Code	:	MT644
Course Title	:	Foundry Metallurgy
Type of Course	:	Program core
Prerequisites	:	NIL
Contact Hours	:	4
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To understand the metallurgy of various types of cast iron
CLO2	To understand various specifications for ferrous systems
	To comprehend the basic principles of physical metallurgy of ferrous and non-ferrous
	alloys and apply those principles for engineering applications
CLO4	Apply the basic principles of physical metallurgy for developing new ferrous and non-
	ferrous alloys

Course Content

Types of cast iron – Effect of normal elements in cast iron. Influence of composition and cooling rate. Cast iron production methods, SG Iron production – Degree of Nodularising – Malleable iron production, CG Iron, Austempered Ductile iron and Alloy Cast iron-Inoculation and Inoculating practices

Specifications for steels and alloy cast irons as per IS,BS and ASTM- Metallurgical aspects of gating and risering of ferrous alloys, fluidity of ferrous alloys.

Typical non-ferrous casting alloys(such as aluminium, magnesium, copper and other commercially important non-ferrous alloys), specifications, properties, industrial applications, melting and composition control, deoxidation, gating and risering techniques.

Solidifications of ferrous and non –ferrous metals. Directional solidification of ferrous metals and its alloys, modeling of solidification for both ferrous and non-ferrous metals

References

1	Heine, Loper and Rosenthal, "Principles of Metal Casting", Tata McGraw Hill,
	PublishingCo,1995
2	Flinn RA., "Fundamental Metal Casting"., Addison-Wesley, 1963.
3	John R.Brown, "FOSECO Ferrous Foundry Man's Hand Book", Butterworth, 2000.
4	ASM Hand Book, Vol. 15, Casting, ASM Hand Book Committee, 1998.
5	John R.Brown, "FOSECO Non Ferrous Foundry Man's Hand Book", Butterworth, 2000.
6	Murphy,A.J.,Ed.,"Non Ferrous Foundry Metallurgy",Pergamon,USA,1984

Course Outcomes:

CO1	Understand the casting aspects of ferrous and non-ferrous alloys.
CO2	Identify the phases present in different alloy systems.
CO3	Understand the structure-property correlation in different ferrous and non-ferrous alloys
CO4	Apply the basic principles of ferrous foundry metallurgy for selection of materials for
	specificapplications
CO5	Apply the basic principles of non-ferrous foundry metallurgy for selecting materials
	forspecific applications

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	PO1	PO2	PO3
MT644	Foundry Metallurgy	CO1	Understand the casting aspects of ferrous and non-ferrous alloys.	М	L	М
		CO2	Identify the phases present in different alloy systems.	Η	L	М
		CO3	Understand the structure- property correlation in different ferrous and non-ferrous alloys	Н	L	Н
		CO4	Apply the basic principles of ferrous foundry metallurgy for selection of materials for specificapplications	Н	L	M
		CO5	Apply the basic principles of non-ferrous foundry metallurgy for selecting materials forspecific applications	Н	L	M

Course Code	:	MT646
Course Title	:	Metal Forming
Type of Course	:	Program core
Prerequisites	:	NIL
Contact Hours	:	4
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To know the concepts of metal forming and associate technologies
CLO2	To apply the concepts of conventional and advanced materials manufacturing for
	various structural applications
CLO3	To gain knowledge on metal forming defects, causes, and remedies
CLO4	To know various special forming techniques

Course content

Yielding criteria of von Mises and Tresca. Levy-Von Mises equations and Prantl Reuses equations for ideal plastic and elastic plastic solids respectively. Yield Locus. Methods of load calculation including slab method, slip line field theory, FEM, upper and lower bound methods.

Texture effects. Metallurgical factors affecting recrystallization temperature and grain size. Effect of temperature, strain rate, hydrostatic pressure, Microstructure. Residual stresses, Friction and lubrication mechanisms. Lubricants in rolling, forging, extrusion, wire drawing, sheet metal forming. Tool design

Types of rolling mills, Geometrical factors and forces, Factors affecting rolling load and minimum thickness, Roll pass design, wheel and tyre production. Rolling defects, Processes and equipment, Forgeability, effect of various factors, definitions. Selection of equipment, die design, parting line, flash, draft, tolerance. Defects, causes and remedies.

High velocity forming methods, superplastic forming, hydroforming, isothermal forging. Incremental forming, fine blanking, Principles and processes. FLD and LDR, CAD, CAM in forming use of softwares like OPTRIS, DEFORM, etc. Workability.

Sol-gel and other processes for powders. Slip casting, extrusion injection moulding, HIP and CIP (Isostatic pressing), sintering. Blow moulding, Blow and Injection Moulding. Compression and transfer Moulding, Pultrusion. Filament Moulding. Resin Transfer Moulding.

References

1761	erences
1	Dieter, G.E., "Mechanical Metallurgy", McGraw Hill, 2001.
2	ASM "Metals Handbook, Vol. 14, Forming & Forging", ASM, Metals Park, Ohio, USA, 1998.
3	Kurt Lange, "Handbook of Metal Forming", Society of Manufacturing Engineers, Michigan,
	USA, 1985.
4	Belzalel Avitzur, "Metal Forming- Processes and Analysis", Tata McGraw Hill, 1977.
5	Pat.L.Manganon, "Principles of Materials Selection for Engineering
	Design", Prentice Hall Int. Inc, 1999
6	Knigery,W.D., Ceramic Fabrication Processes, John Urley, 1950.
7	ASM, "Metals Handbook, Vol. I", Properties and selection, McGraw Hill, 2001.

Course outcomes:

At the end of this course, the students would be able to:

CO1	Apply the concept of plastic deformation for metals and alloys to convert them in to
	usefulshapes for intended engineering applications
CO2	Differentiate the various metal forming technology and choose the appropriate one for
	requiredengineering applications
CO3	Provide the successful solution to the various materials design and selection
	criteria fordemanding engineering applications.
CO4	Analyze various operational and materials parameters influencing the metal forming
	quality.
CO5	Classify various metal forming technology (forging, rolling, extrusion etc.) and
	associatedforming equipments
CO6	Define various secondary forming procedures like stretch forming, deep drawing
	blanking andassociated equipments

Course Code	Course Title	СО	Course outcomes At the end of the course, students will	PO1	PO2	PO3
MT646	Metal Forming	CO1	Apply the concept of plastic deformation for metals and alloys to convert them in to useful shapes for intended engineering applications	Н	L	Н
		CO2	Differentiate the various metal forming technology and choose the appropriate one for requiredengineering applications	Н	L	М
		CO3	Provide the successful solution to the various materials design and selection criteria for demanding engineering applications.	Н	L	Н
		CO4	Analyze various operational and materials parameters influencing the metal forming quality.	M	L	I
		CO5	Classify various metal forming technology (forging, rolling, extrusion etc.) and associatedforming equipment		L	М
		CO6	Define various secondary forming procedures like stretch forming, deep drawing blanking and associated equipment	M	L	M

Course Code	:	MT649
Course Title	:	Microstructure characterization and Material Testing
		Laboratory
Type of Course	••	Laboratory
Prerequisites	:	NIL
Contact Hours	:	3
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To learn the principles of material testing and characterization and to apply them for
	various engineering applications.

<u>LIST OF EXPERIMENTS</u>:

- 1. Study of metallurgical microscope and sample preparation
- 2. Microscopic examination of ferrous alloys (plain carbon steels, stainless steels, maraging steels and tool steels and cast irons).
- 3. Microscopic examination of non-ferrous materials (Magnesium alloys, Aluminum alloys, Titanium alloys, Copper alloys, Super alloys).
- 4. Tensile Testing using Hounsfield and UTM
- 5. Hardness Measurements (Rockwell, Vickers and Brinell)
- 6. Impact Testing (Izod and Charpy)
- 7. Determination of crystal structure and lattice parameters from XRD data
- 8. Crystallite size determination of materials using XRD
- **9.** Fractography using scanning electron microscope

Course Outcomes (CO)

CO1	Prepare the specimens for metallographic examination with best practice, can operate the				
	optical microscope and understand, interpret, analyze the microstructure of materials.				
CO2	Classify the different mechanical testing methods with their inherent merits and limitations				
CO3	Apply various test methods for characterizing physical properties of materials				
CO4	Recommend materials testing techniques based upon desired results, perform basic				
	statistical analysis on data, and summarily present test results in a concise written format				

Course	Course Title	CO	Course Outcomes	PO1	PO2	PO3
Code			At the end of the course student			
			will be able			
MT649	Microstructure	CO1	Prepare the specimens for	Н	М	Н
	characterization		metallographic examination with			
	and Material		best practice, can operate the			
	Testing		optical microscope and understand,			
	Laboratory		interpret, analyze the microstructure			
			of materials			
		CO2	Classify the different mechanical	М	М	М
			testing methods with their inherent			
			merits andlimitations.			
		CO3	Apply various test methods for	Н	М	Н
			characterizing physical properties			
			of materials			
		CO4	Recommend materials testing	М	Н	Н
			techniques based upon desired			
			results, perform basic statistical			
			analysis on data, and summarily			
			present test results in a concise			
			written format			

Course Code	:	MT650
Course Title	:	ADVANCED MATERIALS PROCESSING LABORATORY
Type of Course	:	Laboratory
Prerequisites	:	NIL
Contact Hours	:	3
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

ntfor the latest developments in materials processing.	CLO1
--	------

LIST OF EXPERIMENTS:

- 1. Fabrication of nanostructured coatings by plasma electrolytic processing
- 2. Mechanochemical synthesis of nanostructured compounds
- 3. Microwave synthesis of nanosized ceramic powders
- 4. Diffusion bonding of Materials
- 5. Equichannel angular processing of materials
- 6. Cryorolling of materials
- 7. Vacuum arc melting of materials
- 8. Spark plasma sintering of materials
- 9. Microwave sintering of materials
- 10. In-situ synthesis of metal matrix composites by casting
- 11. Arc-welding practice

Course Outcomes (CO)

CO1	Understands the working principles of different advanced processes
CO2	Synthesize nanostructured materials by advanced processing methods.
CO3	Perform experiments with best practices and understands the advantages
	andlimitations of different processes
CO4	Interpret and analyze the data and present the results in a concise written format
CO5	Recommend a suitable process for modifying the material properties.

Course Code	Course Title	СО	Course Outcomes At the end of the course student will be able	PO1	PO2	PO3
MT650	Advanced Materials Processing	CO1	Understands the working principles of different advanced processes	M	M	M
	Laboratory	CO2	Synthesize nanostructured materials by advanced processing methods.	Н	М	Н
		CO3	Perform experiments with best practices and understands the advantages and limitations of different processes	Н	M	Н
		CO4	Interpret and analyze the data and present the results in a concise written format	M	Н	Н
		CO5	Recommend a suitable process for modifying the material properties.	М	М	M

M.Tech – Industrial Metallurgy

Department of Metallurgical and Materials Engineering

Course Code	:	MT657
Course Title	:	PROJECT WORK PHASE –I
Type of Course	:	Project Work
Prerequisites	:	
Contact Hours	:	
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

Course Learning Objectives (CLO)

CLO1	To know in depth exploration of a topic of special interest and to explain,
	applyrelevant theories and laws in the chosen area.

Course Outcomes (CO) At the end of the course student will be able

CO1	Interpret theories and doctrines and give recommendations where appropriate.
	Knowledge on the chosen topic and apply the knowledge, experience, and skillslearned.
CO2	Acquire knowledge on the chosen topic and apply the knowledge, experience, and skills
	learned
CO3	Produce a thesis of publishable quality. Effectively present and defend research orally.
CO4	Effectively present and defend research orally.

Course	Course	СО	Course Outcomes	PO1	PO2	PO3
Code	Title		At the end of the course student will be able			
MT657	Project Work Phase -I	CO1	Interpret theories and doctrines and give recommendations where appropriate. Knowledge on the chosen topic and apply the knowledge, experience, and skills learned.	Н	M	Н
		CO2	Acquire knowledge on the chosen topic and apply the knowledge, experience, and skills learned	M	M	М
		CO3	Produce a thesis of publishable quality.	Ι	Н	Н
		CO4	Effectively present and defend research orally.	Н	М	Н

Course Code	:	MT658
Course Title	••	PROJECT WORK PHASE –II
Type of Course	••	Project Work
Prerequisites		
Contact Hours	:	
Course Assessment	••	Continuous Assessment, End Assessment
Methods		

CLO1	To know in depth exploration of a topic of special interest and to explain,
	applyrelevant theories and laws in the chosen area.

Course Outcomes (CO)
At the end of the course student will be able

CO1	Interpret theories and doctrines and give recommendations whereappropriate.
CO2	Acquire knowledge on the chosen topic and apply the knowledge, experience, and skills
	learned
CO3	Produce a thesis of publishable quality
CO4	Effectively present and defend research orally.

Course	Course Title	CO	Course Outcomes	PO1	PO2	PO3
Code			At the end of the course student will be able			
MT658	Project Work Phase -II	CO1	Interpret theories and doctrines and give recommendations where appropriate.	Η	M	Η
		CO2	Acquire knowledge on the chosen topic and apply the knowledge, experience, and skills learned	M	M	M
		CO3	Produce a thesis of publishable quality	Н	Н	Н
		CO4	Effectively present and defend research orally.	Н	М	Η

Course Code	:	MT661
Course Title	:	PHYSICAL METALLURGY
Type of Course	:	PE
Prerequisites	:	NIL
Contact Hours	:	4
Course Assessment Methods	:	Continuous Assessment, End Assessment

CLO1	To develop	an und	erstanding	of the	basis	of physical	metallurgy	and	correlate	structure	of
	materials w	ith their	oroperties	for eng	ineering	g application	ns.				

Course Content

- Introduction to structure (atomic structure, micro and macrostructure) and their importance to relate with properties and processing. Overview of engineering alloys and their applications.
 Details on transformations: Liquid to solid and Solid to solid transformation and their importance in fine tuning the properties of engineering alloy and processing
- Diffusion, energetic of solidification Nucleation and growth-dealing homogeneous and heterogeneous nucleation and growth of solids, dendritic growth in pure metals, constitutional super cooling and dendritic growth in alloys.
- Phase diagrams solid solution –types, Hume –Rothery rule. Phase diagrams Binary-types Lever rule. Solidification of different types of solid solutions Iron-Carbon diagram Effect of alloying element on Iron- carbon diagram. Ternary phase diagrams- Understanding of isotherms and isopleths.
- Strengthening mechanisms strengthening by grain-size reduction, solid solution Strengthening, strain hardening, dispersion hardening and other recent modes of hardening. Heat treatment of ferrous alloys; Annealing, Normalising, TTT and CCT diagrams, Hardening – hardenability measurements, tempering. Thermo mechanical treatments. Heat treatment furnaces – atmospheres – quenching media – case hardening techniques.
- Engineering alloys: Types, composition and processing and their structure -property correlation. Metallurgy of newer alloys (High entrpy alloys, intermetallic compounds-Aluminides, silicides, etc)

References

1.	Avner, S. H., "Introduction to Physical Metallurgy", second edition, McGraw Hill, 1985.
2.	William F. Hosford, Physical Metallurgy, Taylor & Francis Group, 2008
3.	Raghavan, V., "Physical Metallurgy", Prentice Hall of India, 1985
4.	Donald R Askland and Pradeep P Phule "Essentials of Materials Science and Engineering, Baba
	Barkha NathPrinters, Delhi.
5.	Willam D. Callister, Jr. Materials Science and Engineering, Wiley India Pvt. Ltd.,2018
6.	Vijendra Singh, Physical Metallurgy, Standard Publishers distributors, 1999.

Course Outcomes (CO)

CO1	Understand the structures of various engineering alloys and relate to their properties and
	processing.
CO2	Learn the transformation kinetics and apply in developing microstructure-controlled engineering alloys
CO3	Design and scheduling of heat treatment process for various engineering in order to meet the industrial requirements
CO4	Tailor the engineered alloy with the help suitable strengthening methods
CO5	Know the various newer alloys and their applications and suitably place in different engineering
	structures

M.Tech – Industrial Metallurgy

Department of Metallurgical and Materials Engineering

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	PO1	PO2	PO3
MT661	Physical Metallurgy	CO1	Understand the structures of various engineering alloys and relate to their properties and processing.	I	М	I
		CO2	Learn the transformation kinetics and apply in developing microstructure-controlled engineering alloys.	H	М	Η
		CO3	Design and scheduling of heat treatment process for various engineering in order to meet the industrial requirements.	H	М	H
		CO4	Tailor the engineered alloy with the help suitable strengthening methods.	Τ	М	Τ
		CO5	Know the various newer alloys and their applications and suitably place in different engineering structures.	Н	M	Н

Course Code	•	MT662
Course Title		TESTING, INSPECTION, AND CHARACTERIZATION
Type of Course	••	PE
Prerequisites		NIL
Contact Hours		3
Course Assessment Methods	:	Continuous Assessment, End Assessment

CLO1	To provide an understanding of the basic principles of various testing, Inspection
	and characterization tools and use those tools to analyze metallurgical
	components.

Course Content

Purpose and importance of destructive tests – Concepts, and method of Tensile, hardness, bend, torsion, fatigue and creep testing; Adopting these testing methods as per standards and analysing the outcome of the testing

Purpose and limitations of NDT, Concepts, operating principles, advantages, limitations of liquid penetrant testing and magnetic particle inspection, eddy current testing, ultrasonic testing, radiography. Comparison of NDT methods and selection of NDT methods. Identifying suitable method(s) and analysing the outcome of the testing.

Light optical microscopy, basic principles and special techniques. X-ray diffraction and its applications in materials characterization. Identifying suitable method(s) and analysing the outcome of the testing.

Electron microscopy, Construction, operation and applications of scanning electron microscope (SEM), transmission electron microscope (TEM) along with their attachments like energy dispersive spectroscopy, wavelength dispersive spectroscopy, electron back scattered diffraction. Analysis of the imaging and diffraction results; tomography.

Thermal analysis: Thermo gravimetric analysis, differential thermal analysis, differential scanning calorimetry and dilatometry.

References

1.	Suryanarayana A.V.K., 'Testing of Metallic Materials', 2nd edition, B S Publications, 2018
2.	Non-destructive testing, B.Hull And V.John, Macmillan, 1988.
3.	Modern Physical Metallurgy and Materials Engineering, R. E. Smallman, R. J. Bishop, sixth
	edition, Butterworth-Heinemann, 1999.
4.	Materials Characterization, P.C.Angelo, Elsevier (India) Pvt. Ltd, Haryana, 2013,

Course Outcomes (CO)
At the end of the course student will be able

CO1	Know various destructive testing methods of materials and analysing its results						
CO2	Know various non-destructive testing methods of materials and analysing its results						
CO3	Understanding the basic characterization techniques like OM and XRD and also						
	understanding which technique can be used in a specific requirement						
CO4	Understanding the advanced microscopic characterization techniques SEM, TEM, EBSD						
	and also understanding which technique can be used in a specific requirement						
CO5	Evaluate the specimen by thermal analysis and dilatometry						
	, , , , , , , , , , , , , , , , , , ,						

Course Code	Course Title	CO	Course outcomes At the end of the course, students will be able	PO1	PO2	PO3
MT662	Testing, Inspection, and Characterization	CO1	Know various destructive testing methods of materials and analyzing its results.	M	Η	H
		CO2	Know various non-destructive testing methods of materials and analysing its results.	M	Η	M
		CO3	Understanding the basic characterization techniques like OM and XRD and also understanding which technique can be used in a specific requirement.	Н	Η	Η
		CO4	Understanding the advanced microscopic characterization techniques SEM, TEM, EBSD and also understanding which technique can be used in a specific requirement.	Ι	I	I
		CO5	Evaluate the specimen by thermal analysis and dilatometry.	Н	Η	Н

Course Code	:	MT663
Course Title		MECHANICAL BEHAVIOUR OF MATERIALS
Type of Course	:	PE
Prerequisites	:	NIL
Contact Hours	:	4
Course Assessment Methods	:	Continuous Assessment, End Assessment

CLO1 To understand the concepts on materials failure and fracture analysis of materials and to design new materials that can with stand catastrophic failures at different environment.

Course Content

- Definition of stress, strain, transformation of coordinate systems, tensor notations, relationship between stress and strain in elastic materials, concept of principal stress and principal strain, stress invariants, modulus, Hook's law and understanding of stiffness and compliance tensors, elastic anisotropy,
- Yield criteria, equivalent stress and plastic strain, Theoretical shear of perfect crystal, Mohs circle, concept of dislocations and dislocation theory, edge and screw dislocations, dislocation interactions, kink and jog, sessile and glissiles, partial dislocations, dissociation of dislocations, Thomson tetrahedral, Lomer-Cottress barriers.
- Strengthening mechanisms, work hardening, solid solution strengthening, grain boundary strengthening, particle hardening, polymer elasticity and viscoelasticity, types of reinforcements and their influence, types of composites, high temperature degradation, creep and stress rupture, deformation mechanism maps, superplasticity and hot working.
- Hardness, types of hardness measurements, comparison among hardness methods and scales, nanoindentation, compression testing, comparison between tension and compression studies of materials, shear testing, shear modulus, torsion and twist.
- Fatigue of materials, S-N curves, life data presentation, influence of stress, linear elastic fracture mechanics in fatigue, crack growth studies, Paris law, metallurgical aspects of fatigue failures, concepts of remedial measures, creep-fatigue interaction, theoretical strength, Griffith equation, Brittle fracture, ductile fracture, fracture maps.

References

1.	Dieter G. E., 'Mechanical Metallurgy', 3 rd Edition, McGraw Hill, 1988
2.	Suryanarayana, 'Testing of Metallic Materials', Prentice Hall India, 1979.
3.	Rose R. M., Shepard L. A., Wulff J., 'Structure and Properties of Materials', Volume III, 4 th Edition, John Wiley, 1984
4.	Thomas H. Courtney, "Mechanical Behavior of Materials", 2nd Edition, 2013, Overseas Press India PrivateLimited, ISBN: 81-88689-69-6
5.	Norman E. Dowling, "Mechanical Behavior of Materials", International Editirion (4th), Contributed by K. Sivaprasad and R. Narayanasamy, 2013, Pearson Education Limited. ISBN : 13:978-0-273-76455-7

Course Outcomes (CO)
At the end of the course student will be able

CO1	Understand the relationship between stress and strain
CO2	Understand the yielding behavior and dislocation influence on plastic deformation
CO3	Understand the various strengthening mechanisms and high temperature deformation
CO4	Understand testing methods like hardness, compression, and fatigue

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	P01	PO2	PO3
MT663	Mechanical Behaviors	CO1	Understand the relationship between stress and strain.	Н	L	Η
	of Materials	CO2	Understand the yielding behaviour and dislocation influence on plastic deformation.	Н	L	M
		CO3	Understand the various strengthening mechanisms and high temperature deformation.	Н	L	H
		CO4	Understand testing methods like hardness, compression, and fatigue.	Н	L	М

Course Code	•••	MT664
Course Title		CORROSION ENGINEERING
Type of Course	•	PE
Prerequisites	•••	NIL
Contact Hours		3
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To provide a practical knowledge about corrosion and its prevention in engineering	field.
------	--	--------

Course Content

Principles of corrosion phenomenon: Thermodynamics and kinetics: emf/galvanic series, Pourbaix diagram, exchange current density, passivity, Evans diagram, flade potential.

Different forms of corrosion: atmospheric/uniform, pitting crevice, intergranular, stree corrosion, corrosion fatique, dealloying, high temperature oxidation-origin and mechanism with specific examples.

Corrosion testing and monitoring: Non-Electrochemical and Electrochemical methods: weight loss method, Tafel Linear polarization and Impedance techniques, Lab, semi plant & field tests, susceptibility test.

Corrosion prevention through design, coatings, inhibitors, cathodic, anodic protection, specific applications, economics of corrosion control.

Corrosion & its control in industries: Power, Process, Petrochemical, ship building, marine and fertilizer industries. Some case studies-Corrosion and its control in different engineering materials: concrete structures, duplex, super duplex stainless steels, ceramics, composites and polymers. Corrosion auditing in industries, Corrosion map of India.

References

1.	Fontana. M.G., Corrosion Engineering, Tata McGraw Hill, 3 rd Edition, 2005.
2.	Jones. D.A. Principles and Prevention of Corrosion, 2 nd Edition, Prentice Hall, 1996.

Course Outcomes (CO)

CO1	Do electro and electroless plating of Cu, Al alloys
CO2	Determine the corrosion rate by weight loss method, electrical resistance method,
	potentiostatic polarization experiment and atmospheric corrosion using color indicator
	method
CO3	Analyze galvanic corrosion, pitting corrosion and stress corrosion cracking
CO4	Estimate the corrosion resistance by IGC susceptibility test, salt spray test and coating
	thickness

M.Tech – Industrial Metallurgy

Department of Metallurgical and Materials Engineering

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	PO1	PO2	PO3
MT664	Corrosion Engineering	CO1	Do electro and electroless plating of Cu, Al alloys.	Н	L	Η
		CO2	Determine the corrosion rate by weight loss method, electrical resistance method, potentiostatic polarization experiment and atmospheric corrosion using colour indicator method.	M	Н	M
		CO3	Analyze galvanic corrosion, pitting corrosion and stress corrosion cracking	Н	M	Н
		CO4	Estimate the corrosion resistance by IGC susceptibility test, salt spray test and coating thickness.	Н	Н	Н

Course Code	•••	MT665
Course Title		COMPUTATIONAL TECHNIQUES
Type of Course	•	PE
Prerequisites	•••	NIL
Contact Hours	••	3
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To become familiar with experimental design and analysis of variance			
CLO2	To understand finite difference method to solve complex heat transfer problems			
CLO3	To learn the finite element method to simulate various manufacturing processes			
CLO4	To learn the basics of machine learning techniques and how to use it in materials			
	engineering			

Course Content

- Computational Techniques: Introduction, importance, applications; Various techniques, Modeling and simulation, Introduction to ICME (integrated computational materials engineering)
- Design of Experiments: Introduction, Basic Concepts, Analysis of Variance (ANOVA), Factorial Design, Taguchi, Response Surface Methodology
- Finite Difference Method: Introduction, Mathematical formulation, Solving steady state and transient one dimensional and two-dimensional heat transfer problems
- Finite Element Method: Introduction, fundamentals, applications; solving heat transfer and fluid flow problems. Simulation of manufacturing processes.
- Machine learning: Introduction, fundamentals, supervised learning classification and regression, unsupervised learning, semi-supervised learning; usage of machine learning techniques in materials engineering

References

1.	Jiju Antony, Design of Experiments for Engineers and Scientists, 3rd Edition, Elsevier, 2023.
2.	Douglas C. Montgomery, Design and Analysis of Experiments, 8th edition, John Wiley &
	Sons, Inc., 2012
3.	S.V. Patankar, Numerical Heat Transfer and Fluid Flow, CRC Press, 2009.
4.	Tirupathi Chandrupatla, Ashok Belegundu, Introduction to Finite Elements in Engineering,
	5th Edition, Cambridge University Press, 2022.
5.	John D. Kelleher, Brian Mac Namee, and Aoife D'Arcy, Fundamentals of Machine Learning
	for Predictive Data Analytics, 2nd edition, MIT Press, 2022

Course Outcomes (CO)

CO1	To choose a suitable computational technique for solving different engineering problems
CO2	To use analysis of variance and design of experiments for any engineering applications
CO3	To solve heat transfer problems using finite difference method
CO4	To perform manufacturing simulations using finite element method
CO5	To identify the suitable machine learning techniques for solving materials engineering
	related problems

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	PO1	PO2	PO3
MT665	Computational Techniques	CO1	To choose a suitable computational technique for solving different engineering problems.	H	M	Н
		CO2	To use analysis of variance and design of experiments for any engineering applications.	H	M	Н
		CO3	To solve heat transfer problems using finite difference method.	Η	M	Н
		CO4	To perform manufacturing simulations using finite element method.	Н	M	Н
		CO5	To identify the suitable machine learning techniques for solving materials engineering related problems.	Н	M	Н

Course Code	:	MT666
Course Title		METALLURGICAL FAILURE ANALYSIS
Type of Course	:	PE
Prerequisites	••	NIL
Contact Hours	••	3
Course Assessment	••	Continuous Assessment, End Assessment
Methods		

CLO1	To understand the concepts on materials failure and fracture analysis of materials and to
	design new materials that can with stand catastrophic failures at different environment.

Course Content

- Aims of failure analysis, general procedures of failure analysis. Important factors causing
 the premature failure of metallic components and structures., classification of failure
 sources: Design deficiencies, material deficiencies, processing deficiencies, assembly
 errors, service conditions, neglect and improper operation. Methods and equipment for
 failure analysis, Sample selection and treatment, equipment for materials examination,
 materials analysis equipment for failure analysis, commonly used NDT methods.
- Fractography. Types of failures: ductile, brittle, fatigue, creep, corrosion, wear. Fatigue failures, fractography, effect of variables: part shape, type of loading, stress concentration, metallurgical factors, etc. Wear failures, adhesive, abrasive, erosive, corrosive wear. Corrosion failures, types of corrosion: uniform, pitting, selective leaching, intergranular, crevice, etc. Elevated temperature failures, creep, thermal fatigue, microstructural instability, oxidation.
- Failure mechanisms. Embrittlement phenomena. Environmental effects.
- Failures due to faulty heat treatments. Failures in metal forming and welding.
- Case studies in failure analysis and prevention of failures.

References

1.	Failure Analysis of Engineering Materials, 1st Edition - Charles R. Brooks, Ashok Choudhury,
	published by Mc Graw-Hill Professional, 2001.
2.	Metallurgical Failure Analysis: Techniques and Case Studies, 1st Edition Kannadi
3.	Palankeezhe Balan, published by Elsevier, 2018.
4.	Failure Analysis: Fundamentals and Applications in Mechanical Components - Jose Luis

Course Outcomes (CO)

CO1	The ability to identify the types of failures in engineering components under service.
CO2	Able to determine fracture toughness of ductile and brittle materials.
CO3	Knowledge of the tools and techniques to perform failure analysis. Ability to perform
	fractographic analysis after various failures.
CO4	Ability to perform fractographic analysis after various failures.
CO5	The ability to identify different failure mechanisms resulting from manufacturing
	Processes.
CO6	Able to analyze the failures with the help of case studies and suggest prevention methods
	for failure.

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	PO1	PO2	PO3
MT666	Metallurgical Failure Analysis	CO1	The ability to identify the types of failures in engineering components under service.	L	M	H
		CO2	Able to determine fracture toughness of ductile and brittle materials.	M	Н	L
		CO3	Knowledge of the tools and techniques to perform failure analysis. Ability to perform fractographic analysis after various failures.	L	I	M
		CO4	Ability to perform fractographic analysis after various failures.	Ι	М	L
		CO5	The ability to identify different failure mechanisms resulting from manufacturing Processes.	Н	L	M
		CO6	Able to analyze the failures with the help of case studies and suggest prevention methods for failure.	M	L	Н

Course Code		MT667
Course Title		SURFACE ENGINEERING
Type of Course		PE
Prerequisites		NIL
Contact Hours		3
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To analyse the various concepts of surface engineering and comprehend the design
	difficulties.

Course Content

- Introduction tribology, surface degradation, wear and corrosion, types of wear, roles of friction and lubrication- overview of different forms of corrosion, introduction to surface engineering, importance of substrate
- Chemical and electrochemical polishing, significance, specific examples, chemical conversion coatings, phosphating, chromating, chemical colouring, anodizing of aluminium alloys, thermochemical processes -industrial practices
- Surface pre-treatment, deposition of copper, zinc, nickel and chromium principles and practices, alloy plating, electrocomposite plating, electroless plating of copper, nickelphosphorous, nickel-boron; electroless composite plating; application areas, properties, test standards (ASTM) for assessment of quality deposits.
- Definitions and concepts, physical vapour deposition (PVD), evaporation, sputtering, ion plating, plasma nitriding, process capabilities, chemical vapour deposition (CVD), metal organic CVD, plasma assisted CVD, specific industrial applications
- Thermal spraying, techniques, advanced spraying techniques plasma surfacing, D- Gun and high velocity oxy-fuel processes, laser surface alloying and cladding, specific industrial applications, tests for assessment of wear and corrosion behaviour, weld surfacing techniques

References

1.	Sudarshan T S, 'Surface modification technologies - An Engineer's guide', Marcel Dekker,
	Newyork, 1989
2.	Varghese C.D. 'Electroplating and Other Surface Treatments - A Practical Guide'. TMH. 1993

Course Outcomes (CO)

CO1	Define different forms of processing techniques of surface engineering materials
CO2	Know the types of Pre-treatment methods to be given to surface engineering
CO3	Select the Type of Deposition and Spraying technique with respect to the application
CO4	Study of surface degradation of materials
CO5	Asses the surface testing methods and comprehend the degradation properties

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	PO1	PO2	PO3
MT667	Surface Engineering	CO1	Define different forms of processing techniques of surface engineering materials.	Н	L	Н
		CO2	Know the types of Pre-treatment methods to be given to surface engineering.	Н	L	I
		CO3	Select the Type of Deposition and Spraying technique with respect to the application.	Н	L	Н
		CO4	Study of surface degradation of materials.			
		CO5	Asses the surface testing methods and comprehend the degradation properties.	Н	Н	M

Course Code		MT668
Course Title		Modeling in Materials Processing
Type of Course		PE
Prerequisites		NIL
Contact Hours		3
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To learn principles of physical and mathematical modeling				
CLO2	To gain experience in solving simple non-linear equations				
CLO3	To gain hands-on experience in using software packages				
CLO4	To familiarize with various modeling methods and strategies				

COURSE CONTENT

- Overview of Physical and Mathematical modeling principles, advantages and limitations
- Physical modeling pricinples Similarity criteria, Hot and Cold models, Pilot scale models, Dimensional Analysis, case studies related to steelmaking processes.
- Mathematical modeling principles Static vs dynamic models, Goals and Strategies, Turbulent and multiphase flows, coupled phenomena, Governing equations, boundary conditions, overview of solution methodologies, Boussinesq approximation, convergance criteria, numerical stability criteria, steady and transient problems, heating of slab example.
- Introduction to CFD software (ANSYS Fluent and open source software) CAD geometry building, solution and postprocessing exercises – Practise problems – 2D laminar pipe flow and 2D plane channel turbulent flow, near wall treatment, validation with benchmark cases
- Mathematical modeling of industrial processes Mixing behavior in Ladle (batch process), Residence time distribution in tundish (continuous process), Continuous casting process complexities, Alloy melting, Mass balance model of a gas circuit in DR process, Kinetic modeling of ladle refining process, Thermal and Mechanical Simulation of welding processes.

References

1.	Szekely J., Themelis N. J., 'Rate Phenomena in Process Metallurgy', Wiley, 1971
2.	Dipak Mazumdar and James W. Evans, 'Modeling of Steelmaking Processes', CRC Press,
	2009
3.	S. K. Dutta, 'Fundamental of Transport Phenomena and Metallurgical Process Modeling',
	Springer, 2021
4.	CFD Modeling and Simulation in Materials Processing', Proceedings of Symposium held
	during TMS 2012, Annual Meeting and Exhibition, Orlando USA.

COURSE OUTCOMES (CO)

At The End of The Course Student will be able.

CO1	To assess the similarity criteria to build valid physical models
CO2	To formulate the appropriate building blocks of mathematical models
CO3	To solve set of non-linear equations iteratively without and with the use of softwares
CO4	To visualise modeling of complex industrial scale processes in material processing

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	P01	PO2	PO3
MT668	Modeling in Materials	CO1	To assess the similarity criteria to build valid physical models	М	L	М
	Processing	CO2	To formulate the appropriate building blocks of mathematical models	Н	M	Н
		CO3	To solve set of non-linear equations iteratively without and with the use of software.	M	L	M
		CO4	To visualize modeling of complex industrial scale processes in material processing	Н	Н	Н

Course Code		MT669
Course Title		Automotive Materials
Type of Course		PE
Prerequisites		Nil
Contact Hours		3
Course Assessment	:	Continuous and End Assessment
Methods		

CLO1	To impart the knowledge in auto mobile materials and to equip the students to meet the
	demands of automobile engineering.

Course Content

Otto cycle, diesel cycle, working principle and constructional details of two stroke and four stroke engine, carburetor, fuel feed systems, mechanical and electrical pumps. Petrol injection. Working principle of compression ignition engine, diesel injection systems, recent trends in engine technology

Engine cylinder: Structure and functions, types, cylinder blocks materials and manufacturing processes, improving engine components with surface modifications, Piston: Structures and functions, types, piston materials, piston manufacturing processes

Structure, function and materials for piston rings, camshaft, valves and valve seats, valve springs, connecting rod, crankshaft, turbocharger and exhaust manifold; ULSAB initiative from steel industry; tailor welds.

Types of chassis layout and chassis materials, vehicle frames, materials used for car body, front axle and steering system, drive line, propeller shaft, universal joints, wheels and suspension system.

Environmental impact of emissions from IC engines, Catalyst: catalysts for petrol engines, structures and functions, catalyst to reduce NOx, controlling pollution at cold start, On-board diagnosis. Exhaust gas treatment for diesel engine: particulate filters, regenerative methods, expendable catalyst additive, deNox catalyst.

References

- 1. Ganesan.V, Internal Combustion Engines, Tata-McGraw Hill Publishing Co., New Delhi, 1994.
- 2. Hiroshi Yamagata, The Science and Technology of Materials in Automotive Engines, Woodhead Publishing in Materials, 2005.
- 3. Hajra Choudhury, Elements of Workshop Technology, Vol-I and Vol-II Asia Publishing House, 1996.

Course Outcomes (CO)

At the end of the course, students will be able to

CO1	Understand the fundamentals of automobile engineering and different components in
	automobile
	Describe the importance and reasons for using different types of material used in automobiles
L	Understand future challenges and expectations in automobile engineering.
	and the state of t

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	PO1	PO2	PO3
MT669	Automotive Materials	CO1	Understand the fundamentals of automobile engineering and different components in automobile	H	L	Н
		CO2	Describe the importance and reasons for using different types of material used in automobiles	Н	Н	Н
		CO3	Understand future challenges and expectations in automobile engineering.	Н	L	Н

Course Code		MT670
Course Title		NANOMATERIALS AND TECHNOLOGY
Type of Course		PE
Prerequisites		Nil
Contact Hours		3
Course Assessment	:	Continuous and End Assessment
Methods		

CLO	To know the fundamental concepts of nanomaterials, synthesizing methods, their
	properties at nanoscale and possible technological applications in various fields of
	science and engineering

Course Content

Concept of nano materials – scale / dimensional aspects, Top-down and bottom-up approaches for preparing nano materials

Advantages and limitations at the nano level – thermodynamic aspects at the nano level, health and environmental issues.

Characterization of nano materials and nano structures, important characterization techniques for nano size measurement.

Overview of properties of nano materials, Introduction to nano composites, processing of nanocomposites.

Applications in different areas such as semiconductors, sensors, nanostructured bio ceramics and nanomaterials for drug delivery, Energy related, fuel cells, Photocatalysis applications

References

1.	Pradeep T "Nano: The Essentials", Mc Graw Hill Publishing Co. Ltd., 2007
2.	Mick Wilson et al, "Nanotechnology", Overseas Press (India) Pvt. Ltd., 2005.
3.	Charles P. Poole, Jr., Frank J. Owens, "Introduction to nano technology", Wiley, 2003.
4.	Gunter Schmid, "Nanoparticles: From Theory to Applications", Wiley-VCH Verlag GmbH &
	Co., 2004.

Course Outcomes (CO)

At the end of the course, students will be able to

CO1	Understand the concepts of nanomaterials and their properties
CO2	Learn different routes of synthesizing methods of nanomaterials
CO3	Know the change in properties at the nanoscale level and their applications
CO4	Understanding the risks on producing nanomaterials and safety precautions.

M.Tech – Industrial Metallurgy

Department of Metallurgical and Materials Engineering

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	P01	PO2	PO3
MT670	Nanomaterials and	CO1	Understand the concepts of nanomaterials and their properties	I	┙	H
	technology	CO2	Learn different routes of synthesizing methods of nanomaterials	Н	M	М
		CO3	Know the change in properties at the nanoscale level and their applications	Н	L	Н
		CO4	Understanding the risks on producing nanomaterials and safety precautions	M	Ĺ	М

Course Code		MT671
Course Title		Advanced Electrochemical Techniques
Type of Course		PE
Prerequisites		Nil
Contact Hours		3 hours
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To learn basic concepts of electrodes, electrolytes, electrode potentials and reference						
	electrodes						
CLO2	To learn fundamental principles of electrode-electrolyte interface and electrode kinetics						
CLO3	To learn and understand DC and AC electrochemical techniques						
CLO4	To learn underlying mechanisms, applications of different electrochemical techniques						

Course Content

Thermodynamic and Transport properties of electrolytes - aqueous and molten; solution models: Debye-Hückel (aqueous), Temkin (molten salts); electrode potentials (the underlying physics, i.e., electron excess or electron deficiency on the electrode); emf series (aqueous and molten salts); reference electrodes (thermodynamics and kinetics)

Fundamental aspects of electrochemical processes – Electrode-electrolyte interface, nature of the double layer; kinetics of electrode processes, charge transfer at the electrode/electrolyte interface, cell potential, current distribution and analytical techniques

DC methods such as cyclic voltammetry, linear sweep voltammetry, intermittent titration techniques, potentiodynamic polarization, chronopotentiometry, chronoamperometry, galvanostatic cycling with potential limitation

AC methods, i.e., AC voltammetry and electrochemical impedance spectroscopy, including fitting and analysis of equivalent circuits.

Electrochemical mechanisms involved in electrocatalysis, general & localized corrosion and energy systems. Application of techniques in various fields – corrosion & surface engineering, energy conversion & storage devices like fuel cells, supercapacitors, batteries etc., electrochemical processing of materials such as winning, refining, plating, synthesis and electrochemical recycling.

References:

- 1. Bard, A. J., and L. R. Faulkner. Electrochemical Methods. 2nd Edition. New York: Wiley, 2004.
- 2. Fontana. M.G., Corrosion Engineering, Tata McGraw Hill, 3rd Edition, 2005.
- 3. Crompton R.G., Batchelur-Mculey C., Dikinson E. J. F., Understanding Voltammetry. Imperial College Press, 2012.
- 4. Barsoukov E., McDonald J.R., Impedance Spectroscopy Theory, Experiment, and Applications, Wiley-Interscience, 2nd Edition, 2005.
- 5. Shriram S, Kandler S, Jeremy N, Gi-Heon K, Ahmad P, Matthew K, Design and Analysis of Large Lithium-Ion Battery Systems, Artech House, 2014.

Course Outcomes (CO)

At the end of the course student will be able.

CO1	Asses electrode & electrolyte properties, electrode potentials and distinguish different reference electrodes
CO2	Explain importance of electrode-electrolyte interface and kinetics occurring at the interfaces
CO3	Analyze and apply different DC and AC electrochemical techniques
CO4	Explain mechanisms involved and applications of different electrochemical techniques

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	PO1	PO2	PO3
MT671	Advanced Electrochemical Techniques	CO1	Asses electrode & electrolyte properties, electrode potentials and distinguish different reference electrodes	Н	L	M
		CO2	Explain importance of electrode- electrolyte interface and kinetics occurring at the interfaces	Н	М	H
		CO3	Analyse and apply different DC and AC electrochemical techniques	Н	I	M
		CO4	Explain mechanisms involved and applications of different electrochemical techniques	M	L	M

Course Code		MT672
Course Title	•	DEVELOPMENTS IN IRON MAKING AND STEEL MAKING
Type of Course	:	PE
Prerequisites		NIL
Contact Hours	:	3
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To study the concepts and various processing techniques involved in the field of
	iron and steel making.

Course Content

- Principles of ferrous process metallurgy; review of related concepts from metallurgical thermodynamics and kinetics; sequence of operations in steel plants; basic aspects of furnaces, refractories and fuels; differences between the production of carbon steels and highly alloyed steels
- Overview of iron making, steel making, refining and continuous casting processes; indicative process calculations; environmental considerations; quality issues in steel plant operations
- Modifications of steel making converter operations; developments such as sub lance and dynamic control of steel making, secondary treatment including ladle metallurgy and injection metallurgy; continuous steel making; illustrative numerical problems
- Modifications of continuous casting process; developments such as flow control devices in tundish, sequence casting, high speed casting, detection / prevention of caster breakouts, electromagnetic stirring, thin slab casting; strip casting; illustrative numerical problems
- Current research on metallurgical slags, measurement of critical properties, use of process modeling; design and selection of slags and refractories; discussion on related binary and ternary phase diagrams

References

1.	Current literature on related topics.
2.	Tupkary R.H., 'Introduction to Modern Steel Making', Khanna Publishers, 2004 (primary text).
3.	Bashforth G.R, 'Manufacture of Iron and Steel', Volume I - IV, Asia Publications, 1996.
4.	B. Deo, R. Boom, 'Fundamentals of steel making metallurgy', Prentice Hall International, New
	York, 1993 (primary reference).
5.	Continuous casting - Vol. 1, 'Chemical and Physical Interactions during transfer operations',
	Iron and Steel Society, Warrendale, PA, USA, 198.

Course Outcomes (CO)

At the end of the course student will be able

CO1	Understand the basics of metallurgy involved in iron and steel making
CO2	Describe the overview of processing of iron and steel
CO3	Understand the recent developments, modifications, and applications in the iron and steel making process and apply them in real time problems associated with the making of iron and steel industry

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	PO1	PO2	PO3
MT672	Developments In Iron Making and Steel Making	CO1	Understand the basics of metallurgy involved in iron and steel making.	Н	L	Н
		CO2	Describe the overview of processing of iron and steel.	М	Η	М
		CO3	Understand the recent developments, modifications, and applications in the iron and steel making process and apply them in real time problems associated with the making of iron and steel industry.	Н	M	H

Course Code	:	MT673
Course Title	•••	ADDITIVE MANUFACTURING
Type of Course	:	OE
Prerequisites	••	NIL
Contact Hours	••	3
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To know the principal methods, areas of usage, possibilities and limitations as well as
	environmental effects of the Additive Manufacturing technologies
CLO2	To be familiar with the characteristics of the different materials those are used inAdditive
	Manufacturing.

Course Content

- Overview History Need-Classification -Additive Manufacturing Technology in product development-Materials for Additive Manufacturing Technology – Tooling – Applications.
- Basic Concept Digitization techniques Model Reconstruction Data Processing for Additive Manufacturing Technology: CAD model preparation – Part Orientation and support generation – Model Slicing –Tool path Generation – Softwares for Additive Manufacturing Technology: MIMICS, MAGICS.
- Classification Liquid based system Stereolithography Apparatus (SLA) Principle, process, advantages and applications – Solid based system –Fused Deposition Modeling Principle, process, advantages and applications, Laminated Object Manufacturing, Wire Arc Additive Manufacturing
- Selective Laser Sintering Principles of SLS process Process, advantages and applications, Three-Dimensional Printing – Principle, process, advantages and applications-Laser Engineered Net Shaping (LENS), Electron Beam Melting.
- Customized implants and prosthesis: Design and production. Bio-Additive Manufacturing-Computer Aided Tissue Engineering (CATE) Case studies

References

1. Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, 2nd Ed. (2015), Ian Gibson, David W. Rosen, Brent Stucker

Course Outcomes (CO)

CO1	Upon completion of this course, the students can able to compare different methods and
	discuss the effects of the Additive Manufacturing technologies
CO2	Analyse the characteristics of the different materials in Additive Manufacturing
CO3	Select the appropriate techniques according to the applications

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	PO1	PO2	PO3
MT673	Additive Manufacturing	CO1	Upon completion of this course, the students can be able to compare different methods and discuss the effects of the Additive Manufacturing technologies.	Н	L	Н
		CO2	Analyse the characteristics of the different materials in Additive Manufacturing.	M	Н	Н
		CO3	Select the appropriate techniques according to the applications.	М	L	Н

Course Code	:	MT674
Course Title	:	Phase transformations
Type of Course	:	PE
Prerequisites	:	Physical Metallurgy
Contact Hours	:	3
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

	1 To become familiar with various phase transformation processes and their influence on			
	structure-property correlations			
CLO2	To understand the classical nucleation theory and different modes of solidification			
CLO3	CLO3 To develop a comprehensive understanding on Fe-Fe3C Phase diagram and Time-			
	Temperature Transformation diagram and study their structural transformation with			
	varying temperature			
	To study the kinetics and mechanism of solid-solid phase transformation and			
	understand the structure –property relation			

Course Content

Introduction to phase transformations & classification. Diffusion in solids: phenomenological approach and atomistic approach. Nucleation and growth theories of vapour to liquid, liquid to solid, and solid to solid transformations, Partitionless solidification

Homogeneous and heterogeneous strain energy effect during nucleation; Thermodynamics of solidification, evolution of microstructures in pure metals and binary alloys.

Precipitation from solid solution: types of precipitation reactions, crystallographic description of precipitates, precipitation sequence and age hardening, Precipitate coarsening, spinodal decomposition.

Iron-carbon system: Thermodynamics of peritectic, eutectic, and eutectoid transformations. nucleation and growth of equilibrium phases and non-equilibrium transformations. Diffusion less transformation.

Interface-controlled growth and diffusion-controlled growth; Kolmogorov-Johnson-Mehl-Avrami (KJMA) kinetics, TTT and CCT diagrams, precipitate coarsening

References

- Porter, D.A, Easterling, K.E., and Sherif, M.A., Phase transformations in metals and alloys, 3rd Ed, CRC press, 2017.
 Reza Abbaschian, Robert E. Reed-Hill, Physical Metallurgy Principles, Cengage Learning,
- 2. Reza Abbaschian, Robert E. Reed-Hill, Physical Metallurgy Principles, Cengage Learning, 2008
- 3. Lakhtin Y., 'Engineering Physical Metallurgy', 2nd Edition, University Press of the Pacific, 2000
- 4. Prabhu Dev K. H., 'Handbook of Heat Treatment of Steel', McGraw Hill Education, 2003

5. Avner S.H., 'Introduction to Physical Metallurgy', 2nd edition, Tata McGraw Hill, 1984

Course Outcomes (CO)

At the end of the course student will be able.

CO1	To understand the nucleation and growth theories relevant to phase transformation
CO2	To understand the evolution of microstructures in pure metals and binary alloys.
CO3	To understand the different mechanisms of phase transformation (diffusion, diffusionless,
	massive, spinodal decomposition).
CO4	To apply the TTT and CCT diagrams to design a heat treatment cycle for a given alloy.

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	PO1	PO2	PO3
MT674	Phase Transformation	CO1	To understand the nucleation and growth theories relevant to phase transformation	Н	L	M
		CO2	To understand the evolution of microstructures in pure metals and binary alloys.	Н	L	Н
		CO3	To understand the different mechanisms of phase transformation (diffusion, diffusion less, massive, spinodal decomposition).	Н	L	Н
		CO4	To apply the TTT and CCT diagrams to design a heat treatment cycle for a given alloy.	Н	Н	L

Course Code		MT675
Course Title	:	Crystallography
Type of Course	:	PE
Prerequisites		Nil
Contact Hours		3
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To become familiar with basics of crystal systems and lattices.
CLO2	To get adapted with various crystallographic symmetries, point groups and space groups
	and also understand the correlation between symmetry and properties
CLO3	To get acquainted with different types of solid solutions and other compounds
CLO4	To become familiar with crystallographic defects and their interactions and understand
	how defects determine the properties

Course Content

Motif, lattices, lattice points, lattice parameter, Crystal systems, 14 Bravais lattices, Coordination number, number of atoms per unit cell, packing factor, Miller indices of planes directions, repeat distance, linear density packing factor along a direction, planar density, planar packing fraction

Symmetry and crystallography. Symmetry in crystals. Rotational symmetry, stereographic projections. Crystallographic point groups, micro translations, symmetry of reciprocal lattice, systematic absences, space groups special position.

Radius ration for coordination number 2,4,6,8. Interstitial solid solution, Interstitial compounds. AX, AX2, AB03 A 2B04 crystal structures.

Frenkel- Schottky ionic defects, Ionic defect concentration, solute incorporation, electronic defect electronic defect concentration

Band Gap, density of states, defects. Defects and chemical reaction.

References

1.	Christopher Hammond, The Basics of Crystallography and Diffraction, Oxford Science
	Publications, third edition, 2009
2.	Donald R. Askeland and Pradeep phule. The science and Engineering

Donald R. Askeland and Pradeep phule, The science and Engineering Materials. Thmson, 2003

3. Cullity B.D., Elements of X-ray diffraction, Addison-Wesley Publishing company 1956

Course Outcomes (CO)
At the end of the course student will be able.

CO1	To distinguish different crystal structure and their characteristics
CO2	To understand the different symmetry in the crystal systems and their importance
CO3	To identify and characterize the various ionic and electronic defects in crystal structure
CO4	To demonstrate the importance of band gap and density of states in material properties.

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	PO1	PO2	PO3
MT675	Crystallography	CO1	To distinguish different crystal structure and their characteristics	Н		Н
		CO2	To understand the different symmetry in the crystal systems and their importance	Н	L	Н
		CO3	To identify and characterize the various ionic and electronic defects in crystal structure	Н	Ι	L
		CO4	To demonstrate the importance of band gap and density of states in material properties.	Н	M	M

Course Code	••	MT676
Course Title		Particulate Technology
Type of Course		PE
Prerequisites		NIL
Contact Hours		3
Course Assessment		Continuous Assessment, End Assessment
Methods		

CLO1	To introduce the importance non-conventional processing routes for different
	materials and its importance for advanced materials manufacturing.

Course Content

- Introduction to particulate /powder processing: Historical development, merits and limitations of this process over other conventional manufacturing methods and applications of particulate processing. Stages of powder metallurgy process in design and manufacturing of full shape components
- Attributes of powders: Chemical purity, microstructure, size & distribution, shape, surface
 area, bulk properties (powder density: apparent density, tap density, flow rate,
 compressibility, Standards for powder characterizations, procedure and analysis of powder
 characteristics, Relate the powder attributes in components manufacturing
- Particulates / powders fabrication methods: Mechanical methods, Chemical methods and Physical methods., Customizing process parameters to tailor the powders, Advances in powder manufacturing methods. Powders for specific engineering applications such as additive manufacturing, automobile, magnetic materials, etc.
- **Shaping and Compaction:** Binder assisted pressure less compaction (Slip & slurry casting, extrusion and injection moulding), precursor preparation and mould design
- Pressure assisted compaction: Selection of press and die design, pressure selection upon density, selection of lubrications (both internal and externals) Understanding compaction mechanism and measure the green density and strength, relate green density with pressure and strength. Compaction methods: Die compaction, high velocity compaction, warm compaction, powder rolling, Alternative new pressing technologies, Pressure and temperature assisted powder consolidation: Hot pressing, spark plasma sintering, etc.
- **Sintering:** Fundamental, Sintering theory, sintering diagrams, Effect of compaction on sintering, Sintering types and variables, Solid state sintering, Liquid phase sintering, Sintering equipment and practical sintering operations, Full density methods, Spray forming methods
- **Finishing operation / post-sintering processes:** Repressing, machining, heat treatment, etc. Inspection methods and characterization of sintered components (microstructure, porosity, density, mechanical properties, etc.)
- **Applications:** Structural components, Friction materials, Wear resistant materials, Magnetic materials, etc.
- New development in particulate technology

References

1.	German R.M., 'Powder Metallurgy Science', Metal Powder Industries 1994	Federation, New Jersey,
2.	Kuhn H. A. and Alan Lawley, 'Powder Metallurgy Processing - New 7	echniques and Analysis',
	OxfordIBH Delhi 1978	

Course Outcomes (CO)

At the end of the course student will be able

CO1	Describe the basic mechanism of powder production for variety of materials to meet the demand of the research and industrial needs
CO2	Characterize the various powders (materials) based on the engineering applications Differentiate the processing routes for various powders (materials) and associated technology
CO3	Define modern day processing routes and apply them successfully tomaterials processing
CO4	Apply the powder metallurgy concepts to design new materials for advanced engineering materials
CO5	Apply the concepts of particulate processing to produce non-conventional materials which are difficult to produce other techniques

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	PO1	PO2	PO3
MT676	Particulate Technology	CO1	Describe the basic mechanism of powder production for variety of materials to meet the demand of the research and industrial needs.	Н	L	H
		CO2	Characterize the various powders (materials) based on the engineering applications Differentiate the processing routes for various powders (materials) and associated technology.	Н	Н	М
		CO3	Define modern day processing routes and apply them successfully to materials processing.	Н	М	Н
		CO4	Apply the powder metallurgy concepts to design new materials for advanced engineering materials.	M	L	Н
		CO5	Apply the concepts of particulate processing to produce non-conventional materials which are difficult to produce other techniques.	M	L	Н

Course Code		MT677
Course Title		PROCESS MODELING
Type of Course	:	PE
Prerequisites		NIL
Contact Hours		3
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To provide an understanding of the basic principles of modeling and use those
	methods to analyze and solve metallurgical Processes.

Course Content

- Mathematical modeling, physical simulation, advantages and limitations; process control, instrumentation and data acquisition systems
- Review of transport phenomena, differential equations & numerical methods; concept of physical domain and computational domain, assumptions and limitations in numerical solutions, introduction to FEM & FDM, examples
- Introduction to software packages— useful websites and generic information about different products - ANSYS, Thermocalc, CFD; usage of expert systems, artificial intelligence and robotics; demonstration of some software packages
- Physical modeling cold and hot models; case studies of water models, use of computers for the construction of phase diagrams, alloy design, crystallography, phase transformations and thermo chemical calculations.
- Case studies from literature pertaining to modeling of solidification / heat transfer, fluid flow, casting, welding and liquid metal treatment

References

1.	Szekely J., Themelis N. J., 'Rate Phenomena in Process Metallurgy', Wiley, 1971
2.	P.S. Ghosh Dastidar, "Computer Simulation of Flow and Heat Transfer", Tata McGraw Hill,
	New Delhi, 1998

Course Outcomes (CO)

CO1	understand the capabilities provided by various modeling methods
CO2	analysis methods and apply the appropriate ones to solve real problems
CO3	gain hands-on experience in using software packages

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	PO1	PO2	PO3
MT677	Process Modeling	CO1	Understand the capabilities provided by various modeling methods.	Ι	L	M
		CO2	Analysis methods and apply the appropriate ones to solve real problems.	Ι	M	Н
		CO3	Gain hands-on experience in using software packages.	М	L	Н

Course Code	:	MT678
Course Title	:	Advanced Material Characterization Techniques
Type of Course	:	PE
Prerequisites		Nil
Contact Hours		3
Course Assessment		Continuous Assessment, End Assessment
Methods		

CLO1	To become familiar with advanced microscopy techniques			
CLO2	To understand application of various advanced microscopy techniques in materials			
	engineering			
CLO3	To understand the post processing of results from various advanced characterization			
	techniques			

Course Content

Electron back scattered diffraction –working principle, imaging, post-processing and orientation analysis, application

Transmission kikuchi diffraction -working principle, imaging, post-processing analysis, application, TKD vs EBSD, TKD vs TEM, TKD vs APT

Aberration-corrected Transmission electron microscopy –basic principle, construction and operation, high resolution imaging, applications

X-ray microscopy -principle, construction and operation, sample preparation, application and limitations, X-ray tomography

Atom probe tomography –principle, construction and operation, sample preparation, IVAS software, post processing and 3D construction, application and limitations

References

1.	Micheal K Miller Richard G. Forbes, Atom probe tomography: The local electrode atom probe,
	Springer New York, 2014.
2.	Chris Jacobsen, X ray Microscopy, Cambridge University Press, 2019
3.	Adam J. Schwartz, Brent L. Adams, Mukul Kumar, Electron Back Scattered diffraction in
	Material Science, 2nd Edition, Springer 2010
4.	Glenn C. Sneddon, Patrick W. Trimby, Julie M. Cairney, Transmission Kikuchi diffraction in a
	scanning electron microscope: A review, Material Science and Engineering R: Reports, 2016
5.	C. Barry Carter and David B Williams, Transmission Electron Microscopy: Diffraction, Imaging
	and spectrometry, Springer 2016

Course Outcomes (CO)

CO1	To understand the working principle of various advanced characterization techniques			
CO2	To choose a characterization technique to analyze various features of materials at sub-micro			
	scale			
CO3	To interpret results of advanced characterization techniques			

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	PO1	PO2	PO3
MT678	Advanced material characterization techniques	CO1	To understand the working principle of various advanced characterization techniques	Н	L	Н
		CO2	To choose a characterization technique to analyze various features of materials at sub-micro scale	Н	L	Н
		CO3	To interpret results of advanced characterization techniques	Н	L	Н

Course Code	:	MT679
Course Title	:	NON-DESTRUCTIVE TESTING
Type of Course	:	PE
Prerequisites	:	NIL
Contact Hours	:	3
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To impart knowledge in Non-Destructive Testing and understand the practical importance of
	Non-Destructive testing methods in engineering with appropriate case studies.

Course Content

- Visual Inspection- tools, applications and limitations. Liquid Penetrant Inspection principles, types and properties of penetrants and developers. Advantages and limitations of various methods of LPI. Magnetic particle inspection- principles, instrumentation, applications, advantages and limitations.
- Ultrasonic testing (UT) Nature of sound waves, wave propagation modes of sound wave generation - Various methods of ultrasonic wave generation, types of UT, Principles, instrumentation, applications, advantages, limitations, A, B and C scan - Time of Flight Diffraction (TOFD).
- Radiography testing (RT) Principles, instrumentation, applications, advantages and limitations of RT. Types and characteristics of X ray and gamma radiation sources, Principles and applications of Fluoroscopy/Real-time radioscopy - advantages and limitations - recent advances.
- Eddy current testing Principles, types, instrumentation, applications, advantages and limitations of eddy current testing.
- Acoustic emission testing Principles, instrumentation, types of signals and noises, applications, advantages and limitations of acoustic emission testing.
- Thermography Principles, types, applications, advantages and limitations. Optical & Acoustical holography- Principles, types, applications, advantages and limitations. Case studies: weld, cast and formed components.
- Application of Industrial Internet of Things (IIoT) on NDT inspections.

References

1.	Practical Non – Destructive Testing, Baldev raj, Narosa Publishing House (1997).
2.	Non-Destructive Testing, B.Hull and V.John, Macmillan (1988)
3.	Krautkramer, Josef and Hebert Krautkramer, Ultrasonic Testing of Materials, 3rd edition, New
	York, Springer-Verlag (1983).

Course Outcomes (CO)

CO1	Understand the basics of Non-destructive testing
CO2	Describe the overview of Non-destructive testing methods
CO3	Understand the recent developments, modifications, and applications in Non-destructive
	testing and apply them in real-time problems associated with failure analysis and regular
	quality testing for industries

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	PO1	PO2	PO3
MT679	Non- Destructive	CO1	Understand the basics of Non-destructive testing.	Н	L	Н
	Testing CO2	CO2	Describe the overview of Non-destructive testing methods.	I	Η	L
		Understand the recent developments, modifications, and applications in Non-destructive testing and apply them in real-time problems associated with failure analysis and regular quality testing for industries.	H	M	H	

Course Code	:	MT741
Course Title		STAINLESS STEEL TECHNOLOGY
Type of Course	:	PE
Prerequisites		NIL
Contact Hours		3
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To introduce the importance of metallurgical aspects for various types of steel	
	and its importance for advanced manufacturing methods	

Course Content

Metallurgy and Properties of Wrought Stainless Steels, Metallurgy and Properties of Cast Stainless Steels, melting practice in special steel and stainless steel technology, Powder Metallurgy of Stainless Steels, Stainless Steel Cladding and Weld Overlays, Melting and Refining Methods, Recycling Technology.

Atmospheric and Aqueous Corrosion, Stress-Corrosion Cracking and Hydrogen Embrittlement, High-Temperature Corrosion, Corrosion of cast Stainless Steels, Corrosion of Weldments. ASTM and EN standards on corrosion resistance testing.

Forming, Forging and Extrusion, Heat Treatment, Machining, Welding, Brazing, Soldering and Adhesive Bonding. Surface Engineering.

Metallographic Practices for Wrought Stainless Steels, Microstructures of Wrought Stainless Steels, Metallography and Microstructure of Cast Stainless Steels, PhaseDiagrams.

Physical Properties, Low-Temperature Properties, Elevated-Temperature Properties, Tribological Properties, Duplex stainless steels and Martensitic stainless steels – Manufacture, Heat Treatment, Corrosion behavior and welding, applications of stainless steels

References

1.	J.R.Davis, "Stainless steels", ASM speciality Hand Book ASTM International, 1996								
2.	ASM, "Source Book of Stainless Steel", ASM Publisher, 1977								
3.	Peckner.D Bernstein.I.M, "Handbook of Stainless Steel", McGraw Hill Book Co. New York,								
	1977.								

Course outcomes:

By successful completion of this course, the student will be able to

CO1	Review of the selection of stainless steels for use in corrosive environments							
CO2	Describe the practical aspects of forming, heat treating, machining, joining and surface engineering of stainless steel							
CO3	To get the knowledge of phase diagram, metallography and microstructures of various types of stainless steel							

Course Code	Course Title	СО	Course Outcomes At the end of the course student will be able	PO1	PO2	PO3
MT741	Stainless steel	CO1	Review of the selection of stainless steels for use in corrosive environments	М	L	М
	technology	CO2	Describe the practical aspects of forming, heat treating, machining, joining and surface engineering of stainless steel	M		M
		CO3	To get the knowledge of phase diagram, metallography and microstructures of various types of stainless steel	Н	L	М

Course Code		MT742
Course Title		DESIGN OF CASTINGS & WELDMENTS
Type of Course		PE
Prerequisites		NIL
Contact Hours		3
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	General rules for designing of economical moulding and coring
CLO2	Design of gating and risering for various metals used in the casting
CLO3	Appropriate selection of casting design in economical manner for the manufacturing
	components in industries
CLO4	Design weld joins operating under static and dynamic loading conditions.
CLO5	Analyze and predict the life of weld joints using the concepts of fracture mechanics and
	identifying the effects of stress concentration build up.

Course Content

Designing for economical moulding – designing for sand moulding – investment castings. Design for economical coring – general rules for designing cored holes. Design problems involving thin sections, uniform sections unequal sections. Considering metal flow, riser location, feed path, mould-metal temperature effect.

Design problems involving junctions, distortion – possible design remedies. Dimensional variations and tolerances – influence of cores – influence of location of cores. Dimensions for inspection and machining. Surface finish ISI specification, effect of mould material, parting line, fillet influences. Design of gating and risering for ferrous and non-ferrous metals

Types of joints, joint efficiency, edge preparation, types of loads, design for static lading, design for cyclic loading, rigid structures, primary and secondary welds, treating a weld as a line, structural tubular connections, influence of specifications on design, symbols for welding and inspection, estimating and control of welding costs. Residual stresses, causes and effects, methods to measure residual stresses, weld distortion.

Welding procedure specifications, welding procedure qualifications, welder performance qualifications, welding variables, filler metal qualifications, qualification of welding inspectors, welding supervisors and welding engineers, qualification of NDT personnel.

References:

_	
1	"Casting.Design Hand Book" , American Society for Metals,1962
2	Matousek R., "Enginering Design"., Blackwell Scientific Publications., 1962
3	Heine, Loper and Rosenthal, "Principles of Metal Casting", Tata McGraw Hill Publishing
	Co, 1995.
4	Harry Peck, "Designing for Manufacture", Pitman Publications, 1983.

Course outcomes: By successful completion of this course, the student will be able to

CO1	Gain knowledge of the function of the different parts of the mold during the manufacture
	of the cast part.
CO2	Casting design issues and practices through standards
CO3	Develop key steps in new casting and can help in reduce the time involved
CO4	Design problems involving thin sections in various types of castings
CO5	To improve the casting quality by analyzing the various parameters related to cast
	product, tooling and process on manufacturability
CO6	Design weld joints for strength and rigidity under static loading conditions
CO7	Identify the various types of stresses and distortions to a component during welding and
	takes measures to minimize or eliminate such effects

Course Code	Course Title	СО	Course Outcomes At the end of the course student will be able	PO1	PO2	PO3
MT742	Design of castings & weldments	CO1	Gain knowledge of the function of the different parts of the mold during the manufacture of the cast part.	M	L	M
		CO2	Casting design issues and practices through standards	Н	L	Н
		CO3	Develop key steps in new casting and can help in reduce the time involved	M	L	M
		CO4	Design problems involving thin sections in various types of castings	M	L	M
		CO5	To improve the casting quality by analyzing the various parameters related to cast product, tooling and process on manufacturability	Н	L	Н
		CO6	Design weld joints for strength and rigidity under static loading conditions	Н	L	M
		CO7	Identify the various types of stresses and distortions to a component during welding and takes measures to minimize or eliminate such effects	M	M	M

Course Code	••	MT743
Course Title	••	ADVANCED MATERIALS PROCESSING
Type of Course		PE
Prerequisites	••	NIL
Contact Hours	••	3
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To introduce the importance non-conventional processing routes for different
	materials and its importance for advanced materials manufacturing.

Course Content:

Structure of liquid metals, macrostructure of pure metals and alloys-Typical casting alloys, specifications, properties, industrial applications, melting and composition control, deoxidation, gating and risering techniques.

Introduction-structure of nanomaterials- classification of production methods- Nanomaterials-Preparation Techniques-Sol-gel method, combustion synthesis, evaporation and condensation method — Examples. Nanoceramics for electrical, magnetic, mechanical and structural functions-applications.

Pure metals, alloys, intermetallics, immiscible alloy systems and composites; their preparation and applications

Mechanical alloying-processing capabilities-process parameters - Examples of material synthesized - Rapid Solidification Processing - Melt spinning, atomization techniques - examples - Self Propagating High Temperature Synthesis - Process - Advantages - examples.

Consolidation techniques for ceramics and metallic powders-Die compaction -Hotpressing, Cold and Hot Isostatic Pressing, Powder extrusion, Equal Channel Angle Process

References:

1	Nobru.H.Ichinose, "Introduction to Fine Ceramics", Butterworth-Heinman Ltd, NY,1992
2	Metals Handbook Vol. 9 "Powder Metallurgy" ASM Metals Park, Ohio, 1991.

Course outcomes: At the end of this course, the students would be able to:

CO1	Describe the basic mechanism of powder production for variety of materials to meet
	the demand of the research and industrial needs
CO2	Characterize the various powders, nanomaterials (materials) based on the engineering
	applications
CO3	Differentiate the processing routes for different materials like metallic glass (materials)
	and associated technology like Rapid Solidification Processing
CO4	Define modern day processing routes and apply them successfully to new materials
	processing for aerospace and aeronautical applications
CO5	Apply the powder metallurgy concepts to synthesis new materials

Course Code	Course Title	СО	Course Outcomes At the end of the course student will be able	PO1	PO2	PO3
MT743	Advanced materials processing	CO1	Describe the basic mechanism of powder production for variety of materials to meet the demand of the research and industrial needs	Н	L	M
		CO2	Characterize the various powders, nanomaterials (materials) based on the engineering applications	M	L	M
		CO3	Differentiate the processing routes for different materials like metallic glass (materials) and associated technology like Rapid Solidification Processing	M	L	M
		CO4	Define modern day processing routes and apply them successfully to new materials processing for aerospace and aeronautical applications	M	L	M
		CO5	Apply the powder metallurgy concepts to synthesis new materials	M	L	Н

Course Code	:	MT744
Course Title	•	SPECIAL CASTING PROCESSES
Type of Course	:	PE
Prerequisites		NIL
Contact Hours		3
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To increase the production rate, affecting economy and improving the quality of										
	the castings.										
CLO2	To develop components of intricate shape and design by properly selecting the										
	mouldingand casting techniques.										

Course Content:

Introduction to special casting techniques-Shell moulding machines - pattern equipment - sands, resins and other materials used in shell moulding - closing of shells - dimensional tolerances -applications of shell moulding - comparison of shell moulding with other competitive methods.

Types of centrifugal casting processes - calculation of mould rotary speeds - techniques and equipment used in production processes - advantages and limitations of centrifugal casting methods.

Introduction - Pattern and mould materials used in investment casting - technique and production of investment moulds and castings - dimensional tolerances - applications of investment casting process - Shaw process - comparison with other processes - full mould process.

Die casting machines - operation details - die materials - materials cast by die casting method. Die design - comparison with other processes. low pressure die casting. Metal Injection Moulding.

Fluid sand process - V Process - Rheo,thixo and compo casting processes - squeeze casting, Magnetic moulding, Hot box process, cold box process. No-bake processes, Graphite moulding process, Plaster moulding process-High Pressure moulding and continuous casting

References:

1	Beeley, P.R., "Foundry Technology",2nd edition, Butterworths, Heinmann, oxford,2001.											
2	Clegg,A.J.,"Precision Casting Processes",Pergamon Press,London,U.K,1991 Barton,H.K., "Die Casting Processes", Odhams Press Ltd,1985.											
3												
4	Dumond,T.C.,"Shell Moulding and Shell Moulded Castings",ReReinhold publishing											
	corporation Inc.,1984											
5	Doehler, E.h., "Die casting", McGraw Hil Book Co, Newyork, 1991											
6	Heine, Loper and Rosenthal, "Principles of Metal Casting", Tata McGraw Hill Publishing											
	Co,1995											
7	"ASM Handbook", Vol. 15, Casting, ASM Publication, 1998.											

Course outcomes: At the end of this course, the students would be able to:

CO1	Select the appropriate pattern equipment used for shell moulding										
CO2	Techniques and equipment used in centrifugal casting and its types										
CO3	Reinforce the understanding the concepts of patterns and mould materials used in investmentcasting										

Course Code	Course Title	СО	Course Outcomes At the end of the course student will be able	PO1	PO2	PO3
MT744	Special Casting	CO1	Select the appropriate pattern equipment used for shell moulding	M	L	M
	Processes	CO2	Techniques and equipment used in centrifugal casting and its types	M	L	M
		CO3	Reinforce the understanding the concepts of patterns and mould materials used in investment casting	Н	L	M

Course Code	••	MT745
Course Title	••	SPECIAL TOPICS IN METAL FORMING
Type of Course	••	PE
Prerequisites	••	NIL
Contact Hours	••	3
Course Assessment		Continuous Assessment, End Assessment
Methods		

CLO1	To become	familiar	with	forming	processes	apart	from	the	conventional	forming
	techniques.									

Course Content:

High velocity forming – comparison with conventional forming – Explosive forming - explosives – detonation velocity of explosives – energy transfer media – safety circuit – process parameters – application of explosive forming

Petro forge system – rubber pad forming – electromagnetic forming coil requirements – effect of work

piece dimensions and conductivity - applications – electro hydraulic forming – types of electrodes – applications

Superplastic forming – superplasticity – definition - components – mechanism of superplastic deformation – diffusion bonding – superplastic forming and diffusion bonding – methods of forming Severe plastic deformation – ECAP -types- microstructural variations with processing route – cryo rolling – process- types – stress strain distribution

Severe plastic deformation by mechanical alloying – types – equipment – compaction – sintering – mechanism of sintering

References:

1	Hosford W.F and Caddell, 'Metal forming mechanics and metallurgy" Prentice Hall, 1983					
2	Explosive forming process and techniques – A.A.Ezra, Prentice Hall, 1980					
3	ASM metals Handbook, Volume 5, 1984					
4	Padmanabhan K A and G.J.Davis, Superplasticity, Springer Verlag, Berlin Heidberg, NY, 1980.					
5	Mahmood Aliofkhazraei (Editor) "Handbook of Mechanical Nanostructuring" Wiley-VCH Verlag GmbH & Co, Germany, 2015					

Course outcomes: At the end of this course, the students would be able to:

CO1	Understand the non-conventional metal forming methods				
CO2	Select the appropriate technique for forming components				
CO3	Understand superplastic forming techniques				
CO4	Understand top-down approaches in severe plastic deformation				
CO5	Understand bottom-up approaches in severe plastic deformation				

M.Tech – Industrial Metallurgy

Course Code	Course Title	СО	Course Outcomes At the end of the course student will be able	PO1	PO2	PO3
MT745	Special topics in metal forming	CO1	Understand the non-conventional metal forming methods	M	L	M
		CO2	Select the appropriate technique for forming components	M	L	M
		CO3	Understand superplastic forming techniques	M	L	M
		CO4	Understand top-down approaches in severe plastic deformation	M	L	Н
		CO5	Understand bottom-up approaches in severe plastic deformation	M	L	Н

Course Code	:	MT746
Course Title	:	THERMODYNAMICS OF SOLIDIFICATION
Type of Course	:	PE
Prerequisites	:	NIL
Contact Hours	:	3
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	A study of important thermodynamic functions related to solidification of metal in molds												
	involving the characteristics of liquid-solid phase transformations, laws of thermodynamics												
	and other functions.												
CLO2	To analyze solidification processing of engineering materials in terms of the phase												
	equilibrium, transport, and interface phenomena governing microstructure development in												
	liquid-solid transformations.												
CLO3	Fo apply these principles to industrial solidification processes, with emphasis on												
	microstructural capabilities and limitations.												

Course Content:

Introduction and important thermodynamic functions: Laws of thermodynamics-enthalpy, heat capacity, applications of first law to open and closed systems including chemical reactions; entropy, free energy and their interrelationships

Thermodynamics of solidification; Nucleation and growth; Pure metal solidification, Alloy Solidification, Constitutional undercooling, Mullins-Sekerka instability; Single phase solidification: Cellular and Dendritic growth; Multiphase solidification: eutectic, peritectic and monotectic; Modeling of solidification

Heterogeneous systems –equilibrium constants, Ellingham-Richardson diagrams, predominant area diagrams, principles of free energy minimization; energy balance of industrial systems; solutions-chemical potential, Raoult/Henry's law, Gibbs-Duhem equations, regular solutions, quasi chemical theory

Evolution of Phase diagrams -phase rule, free-energy-composition diagrams, solidus-liquidus lines, retrograde solidus; determination of activity and other thermodynamic parameters from phase diagrams, thermodynamic analysis of ternary and multi component systems, interaction parameters

Principles of applications- principles of applications to molten slags and silicate melts; electrochemical methods and applications, aqueous systems; Interfaces-energy,shape, segregation at external and internal interfaces; solid electrolytes; Effect of high pressure on phase transformations; Point imperfections in crystalline solids.

1	Solidification Processing; Fleming, M.C., McGraw-Hill, N.Y., 1974										
2	Fundamentals of Solidification by Kurz, W. and Fisher, D.J., Trans-Tech Publications,										
	Switzerland, 1989		-								

Course outcome:

The students will be able to analyze and understand the

CO1	Thermodynamics of solidification processes and alloys.
CO2	Thermodynamic modeling of solid-liquid phase change and solutions
CO3	Kinetics of solidification such as nucleation, growth, and constitutional super cooling

Course Code	Course Title	СО	Course Outcomes At the end of the course student will be able	PO1	PO2	PO3
MT746	Thermodynamics of Solidification	CO1	Thermodynamics of solidification processes and alloys.	M	L	M
		CO2	Thermodynamic modeling of solid-liquid phase change and solutions	M	M	M
		CO3	Kinetics of solidification such as nucleation, growth, and constitutional super cooling	Н	L	Н

Course Code		MT747
Course Title	•••	Modeling and Simulation of Metal Processing
Type of Course	••	PE
Prerequisites	:	Nil
Contact Hours	:	3
Course Assessment		Continuous Assessment, End Assessment
Methods		

CLO1	To become familiar with importance of modeling and simulation of metal processing										
CLO2	To understand fundamentals of modeling and simulation of casting and solidification										
	processes.										
CLO3	To learn modeling and simulation techniques for metal forming and joining processes										
CLO4	To learn the basics of thermomechanical modeling in metal additive manufacturing										

Course Content

Metal processing: Introduction, fundamentals of metal processing, modeling and simulation of metal processing, their benefits and future perspectives.

Casting and Solidification: Introduction, fundamentals of modeling and simulation in metal casting, thermomechanical modeling of casting processes.

Metal forming: Introduction, fundamentals of metal forming processes, sheet metal forming, modeling and simulation of forming processes, thermomechanical modeling of metal forming.

Metal Joining: Introduction, fundamentals of modeling and simulation of welding processes, thermomechanical modeling of welding processes

Additive Manufacturing (AM): Introduction, fundamentals of modeling and simulation of additive manufacturing processes, thermal and stress modeling of AM processes

1.	ASM Handbook Volume 22A, Fundamentals of Modeling for Metals Processing, ASM
	International, 2009.
2.	ASM Handbook Volume 22B, Metals Process Simulation, ASM International, Materials Park,
	OH, 2010.
3.	R. Beygi, E. Marques, L. F. M. da Silva, Computational Concepts in Simulation of Welding
	Processes, Springer, 2022
4.	Patrice Peyre, Éric Charkaluk, Additive Manufacturing of Metal Alloys 1: Processes, Raw
	Materials and Numerical Simulation, Wiley-ISTE, 2022
5.	Chris V. Nielsen, Paulo A.F. Martins, Metal Forming: Formability, Simulation, and Tool Design,
	Academic Press, 2021

CO1	To perform a thermomechanical modeling of metal solidification during various casting
	process
CO2	To choose a suitable simulation technique for modeling and simulation of different metal
	forming processes.
CO3	To do thermomechanical modeling of different welding processes to optimize the process
	parameters.
CO4	To apply computational tools for thermal and stress modeling of different additive
	manufacturing processes.

Course Code	Course Title	СО	Course Outcomes At the end of the course student will be able	PO1	PO2	PO3
MT747	Modeling and Simulation of Metal	CO1	To perform a thermomechanical modeling of metal solidification during various casting process	Н	L	Н
	Processing	CO2	To choose a suitable simulation technique for modeling and simulation of different metal forming processes.	Н	L	Н
		CO3	To do thermomechanical modeling of different welding processes to optimize the process parameters.	Н	L	Н
		CO4	To apply computational tools for thermal and stress modeling of different additive manufacturing processes.	Н	L	Н

Course Code	:	MT761
Course Title	:	DESIGN AND SELECTION OF MATERIALS
Type of Course	:	OE
Prerequisites		Metal Forming or Mechanical Behavior of Materials or Physical
-		Metallurgy
Contact Hours	:	3
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To know different	Principles of	selecting	materials	and	processes	for	engineering
	applications and me	thodologies for	designing r	new materia	als an	d conceiving	y hyk	orid solutions

Course Content

- Engineering materials and their properties Technologically important properties of materials
 Physical, chemical, mechanical, thermal, optical, environmental and electrical properties of materials.
- Material property charts Modulus density, strength-density, fracture toughness-strength, etc.
- Strategy for materials selection Types of design, Design tools and materials data. Materials selection without shape, Materials selection involving multiple constraints and/or conflicting objectives, Methodology for selection of materials Collection of data on availability, requirements and non-functional things- its importance to the situations case studies
- Selection of material and shape Materials and shape microscopic and micro structural shape factors - limit to shape efficiency Comparison of structural sections and material indices - case studies
- Material processes and process selection Classifying process -- systematic selection of process -- Selection charts -- Ranking of processes -- case studies -- Influence of manufacturing aspects and processing route on properties of materials and its influence on selection of materials -- case studies.

1.	Michael F. Ashby, "Materials Selection in Mechanical Design" 4 TH edition, Butterworth- Heinemann, 2011.
2.	Joseph Datsko, Material selection for design and manufacturing: Theory and Practice, 2 nd edition, CRC Press, 1997
3.	Mahmoud M. Farag, Materials and process selection for engineering design, 2 nd edition, CRC press, 2007

CO1	Approach to the selection of metals, ceramics, polymers, and composites required for the
	mechanical design
CO2	Construct and use materials properties chart to identify a small set of materials meeting
	mechanical, physical and cost requirements
CO3	Construct a translation table for problems involved in either multiple constraints or conflicting
	objectives, and systematically identify candidate materials
CO4	Use material processing charts to select suitable fabrication processes

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	PO1	PO2	PO3
MT761	Design and Selection of Materials	CO1	Approach to the selection of metals, ceramics, polymers, and composites required for the mechanical design	L	M	Н
		CO2	Construct and use materials properties chart to identify a small set of materials meeting mechanical, physical and cost requirements	M	H	L
		CO3	Construct a translation table for problems involved in either multiple constraints or conflicting objectives, and systematically identify candidate materials	L	Н	M
		CO4	Use material processing charts to select suitable fabrication processes	Н	М	L

Course Code	:	MT762
Course Title	•	STATISTICAL QUALITY CONTROL AND MANAGEMENT
Type of Course	:	OE
Prerequisites	:	NIL
Contact Hours	:	3
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To learn the concepts of quality control and quality management and the	eir
	applications related to the manufacture of metallurgical products.	

Course Content

- Quality philosophy; cost of quality; overview of the works of Juran, Deming, Crosby, Taguchi; quality loss function; PDCA cycle; quality control; quality assurance; quality audit; vendor quality assurance.
- Quality organization; quality management; quality system; total quality management; quality awards; quality certification; typical procedure for ISO 9000, ISO 14000, QS 9000.
- Review of some calculation procedures involving statistics and probability; exposure to some applications of statistics and probability; distribution functions; normal distribution curve.
- Variations; analysis of variance statistical tools statistical quality control; control charts;
 process capability analysis; statistical process control; introduction to six sigma
- Inspection; inspection by sampling; acceptance sampling; statistical approaches; single, double and multiple sampling plans; statistical design of experiments.

References

1.	Hansen B.L., P.M. Ghare, 'Quality Control and Application', PHI – EEE, 1997.
2.	Juran J.M., and F.M.Gryna, 'Quality Planning and Analysis', McGraw Hill, New York, 2 nd Edition, 1980

Course Outcomes (CO)

CO1	Understand the basic concepts in quality control and management
CO2	Learn the statistics and probability and distribution functions related to qualitymanagement
	Understand the process of inspection, sampling and their statistical approach in quality
	management in industry

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	PO1	PO2	PO3
MT762	Statistical Quality	CO1	Understand the basic concepts in quality control and management.	I	L	L
	Control and Management	CO2	Learn the statistics and probability and distribution functions related to quality management.	Н	L	Н
		CO3	Understand the process of inspection, sampling and their statistical approach in quality management in industry.	Н	L	М

Course Code	:	MT763
Course Title	:	INTELLECTUAL PROPERTY RIGHTS
Type of Course	:	OE
Prerequisites	:	NIL
Contact Hours	:	3
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To impart the knowledge in IPR and related areas with case studies.

Course Content

- Introduction to Intellectual Property Law The Evolutionary Past The IPR Tool KitPara Legal Tasks in Intellectual Property Law Ethical obligations in Para Legal Tasks in
 Intellectual Property Law Introduction to Cyber Law Innovations and Inventions Trade
 related Intellectual Property Right.
- Introduction to Trade mark Trade mark Registration Process Post registration Procedures

 Trade mark maintenance Transfer of Rights Inter partes Proceeding Infringement Dilution Ownership of Trade mark Likelihood of confusion Trademarks claims –
 Trademarks Litigations International Trade mark Law
- Introduction to Copyrights Principles of Copyright Principles -The subjects Matter of Copyright The Rights Afforded by Copyright Law Copyright Ownership, Transfer and duration
- Right to prepare Derivative works Rights of Distribution Rights of Perform the work
 Publicity Copyright Formalities and Registrations Limitions Copyright disputes and
 International Copyright Law Semiconductor Chip Protection Act
- Introduction to Trade Secret Maintaining Trade Secret Physical Secrurity Employee
 Limitation Employee confidentiality agreement Trade Secret Law Unfair Competation
- Trade Secret Letigation Breach of Contract Applying State Law. Geographic indication
- Managing intellectual property in a knowledge-based society. IPR and technology transfer, case studies.

1.	Debirag E.Bouchoux: "Intellectual Property". Cengage learning, New Delhi
2.	M.Ashok Kumar and Mohd.Iqbal Ali: "Intellectual Property Right" Serials Pub.
3.	Cyber Law. Texts & Cases, South-Western's Special Topics Collections
4.	Prabhuddha Ganguli: 'Intellectual Property Rights" Tata Mc-Graw –Hill, New Delhi

CO1	Understand the different types of IPR
CO2	Study the fundamentals of IPR laws
CO3	Understand scope of patent, copy right, geographic indication and trade secrete

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	PO1	PO2	PO3
MT763	Intellectual Property	CO1	Understand the different types of IPR	Η	L	М
	Rights	CO2	Study the fundamentals of IPR laws	Н	L	Н
	i digi ilo	CO3	Understand scope of patent, copy right, geographic indication and trade secrete	I	L	L

Course Code	:	MT764
Course Title	:	Innovation and Product Development
Type of Course	:	OE
Prerequisites	:	NIL
Contact Hours	:	3
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To understand customer needs and demand for new products.						
CLO2	To train for design thinking for new products						
CLO3	To know various IPR issues in new product development						

Course Content:

Understanding Customer Needs, Organizing Product Development, and New Product Strategy and six sigma in new product development, Creating Demand for New Products

Quantitative Methods for materials selection and Cost–Benefit Analysis

Design for Manufacturing (DFM); Role of DFM in product specification and standardization

Introduction to Intellectual Property and IPR issues in new Product Development

Case studies and minor project

References

	Drew Boyd & Jacob Goldenberg (2013) Inside the Box: The Creative Method that Works for
	Everyone
2.	Joseph V. Sinfield, Edward Calder, Bernard McConnell and Steve Colson (2012)
	How to Identify New Business Models, MIT Sloan Management Review Vol. 53,
	No.2.
3	Karl T. Ulrich, Steven D. Eppinger, Maria C. Yang (2020) Product Design and
	Development, 7th Edition
4	ASTM Design handbook.

Course Outcomes (CO)

Upon completion of this class, students are expected to

CO1	Understand the customer expectations and requirements for new products
CO2	Understand the methods of materials selection for new products
CO3	Solve social problems by new products development
CO4	Learn for new product development and launch

M.Tech – Industrial Metallurgy

Department of Metallurgical and Materials Engineering

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	PO1	PO2	PO3
MT764	Innovation and Product Development	CO1	Understand the customer expectations and requirements for new products	H	M	H
		CO2	Understand the methods of materials selection for new products	Н	M	Н
		CO3	Solve social problems by new products development	I	М	I
		CO4	Learn for new product development and launch	Η	М	H

Course Code		MT765
Course Title		Energy Storage Systems
Type of Course		OE
Prerequisites		NIL
Contact Hours		3
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To become familiarize with energy demands
CLO2	Acquire insights on various energy storage systems
CLO3	Study mateirals used in various energy storage systems
CLO4	Gain insights on futuristic technologies viable for commercialization

Course Content

Energy Storage Systems: Introduction - Energy Demand in India and Sources - Renewable Energy Sources - Power Density Vs. Energy Density - Energy Storage Systems Including Batteries, Supercapacitors, Fuel Cells and Hydrogen Storage

Batteries: Primary And Secondary Batteries (Lithium-Ion, Sodium-Ion, Metal-Air/O2/Co2 Batteries) Working Mechanisms - Battery Components (Cathode, Anode, Electrolyte, Casing Materials) - Nanostructured Materials for Batteries (Carbon-Based and Metal Oxide/Metal Sulfide/MOFs/COFs/MXenes)

Supercapacitors - Electrical Double Layer Model - Principles & Design For EDLC And Pseudocapacitors - Material Prospects - Status & Future Trends. Fuel Cells - Principles For Different Fuel Cells and Materials - Issues & Challenges in Fuel Cells. Hydrogen Storage Methods and Materials- Production and Energy Conversion

Prospects - Discussing Viable Technologies for Commercialization with Emphasis on Environmental Impact, Cost, Efficiency, Advantages, Disadvantages, and Applicability - Integration in Electric Vehicle and Smart Grids.

- 1. Braun, A. Electrochemical energy systems: foundations, energy storage and conversion. Walter de Gruyter GmbH & Co KG. (2018)
- 2. Paul, Rajib, Vinodkumar Etacheri, Yan Wang, and Cheng-Te Lin, eds. Carbon based nanomaterials for advanced thermal and electrochemical energy storage and conversion. Elsevier, (2019).
- 3. Hirose, Katsuhiko. Handbook of hydrogen storage: new materials for future energy storage. John Wiley & Sons, (2010).
- 4. Allen J.Bard and Larry R. Faulkner, Electrochemical methods: Fundamentals and Applications, 2ndEdition John Wiley & Sons. Inc (2004)
- 5. San Ping Jiang, Qingfeng Li, Introduction to Fuel Cells Electrochemistry and Materials, Springer Singapore (2021)

CO1	Learn about energy demands and various energy storage systems
CO2	Understand various battery chemistries and their future prospects
CO3	Select and design materials for energy storage systems
CO4	Understand Hydrogen production and materials used for hydrogen storage

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	PO1	PO2	PO3
MT765	Energy Storage	CO1	Learn about energy demands and various energy storage systems	I	L	М
	Systems	CO2	Understand various battery chemistries and their future prospects	Η	М	L
	CO3		Select and design materials for energy storage systems	Н	М	Н
		CO4	Understand Hydrogen production and materials used for hydrogen storage	Н	М	L

Course Code	:	MT766				
Course Title	:	Artificial Inte	Artificial Intelligence in Materials Engineering			
Number of Credits		3				
LTC Breakup	:	L	Т	Р	contact hours	С
		3	0	0	3	3
Prerequisites (Course code)	:	NIL		•		<u>'</u>
Course Type	:	OE				
Course Learning Chicatives						

Course Learning Objectives

To explore the scope of artificial intelligence (AI) in materials engineering and research.

Course Content

(Considering that AI in Materials Engineering and Research is an emerging field, the following syllabus is intended to provide an outline for the instructor. This syllabus can be suitably navigated to accommodate the recent and relevant advancements.)

Basics of AI – Mathematical Foundation, History and Evolution; Need for AI in Materials Engineering and Research – Data Analysis, Factor Analysis, Image Analysis, Material Discovery

Machine Learning as a subset of AI – Introduction, Types of Data; Supervised Learning – Basics, Regression, Linear and Non-Linear Regression, Gradient Descent, Logistic Regression; Unsupervised Learning – Clustering; Reinforced Learning

Deep Learning – Introduction; Neural Networks – Feedforward, Backpropagation and Parameters; Types – Convolutional and Recurrent Neural Networks; Autoencoders

Quantitative Microstructure Analysis – Computer Vision, Segmentation, Classification, Object Detection and Counting; Data Visualization – Introduction, Types and Techniques

Leading up to Industry 4.0 – Need, Introduction, Significance and Relevance

Reference Books

Artificial Intelligence - A Modern Approach, Stuart Russell, Pearson Publication, 3rd Edition, 2015.

Basics of Artificial Intelligence and Machine Learning, Deeraj Mehrotra, Notion Press, 2019.

Artificial Intelligence by Example, Dennis Rothman, Packt Publishing, 2020

Course	e Outcomes
At the	end of the course, students will be able to
CO1	Understand the mathematical foundation, history, and evolution of AI, and grasp its necessity in materials engineering for tasks such as data analysis, factor analysis, image analysis, and material discovery.
CO2	Gain knowledge of supervised learning, including regression techniques, gradient descent, and logistic regression, as well as unsupervised learning methods like clustering, and understand the basics of reinforced learning, applying these techniques to analyze and interpret data relevant to materials engineering.
CO3	Introduce neural networks, including feedforward and backpropagation, learn about convolutional and recurrent neural networks, and autoencoders, and apply deep learning methods to tasks such as computer vision, segmentation, classification, object detection, and counting.
CO4	Understand the significance and relevance of Industry 4.0 in the context of AI in materials engineering, learn various data visualization techniques to effectively present and interpret data, and be equipped to use AI-driven approaches to enhance materials engineering practices

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	PO1	PO2	PO3
MT766	Artificial Intelligence in Materials Engineering	CO1	Understand the mathematical foundation, history, and evolution of AI, and grasp its necessity in materials engineering for tasks such as data analysis, factor analysis, image analysis, and material discovery.	Н	L	M
		CO2	Gain knowledge of supervised learning, including regression techniques, gradient descent, and logistic regression, as well as unsupervised learning methods like clustering, and understand the basics of reinforced learning, applying these techniques to analyze and interpret data relevant to materials engineering.	Н	L	M
		CO3	Introduce neural networks, including feedforward and backpropagation, learn about convolutional and recurrent neural networks, and autoencoders, and apply deep learning methods to tasks such as computer vision, segmentation, classification, object detection, and counting.	Н	M	M
		CO4	Understand the significance and relevance of Industry 4.0 in the context of AI in materials engineering, learn various data visualization techniques to effectively present and interpret data, and be equipped to use AI-driven approaches to enhance materials engineering practices	H	L	H

Course Code		MT767
Course Title		Molecular Modeling of Materials
Type of Course		OE
Prerequisites		Nil
Contact Hours		3
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

To become familiar with the basic concepts electronic scale and atomic scale modeling techniques useful in materials research.

Course Content

Quantum Mechanics – Basic concepts, Schrödinger wave equation, assumptions and approximations, brief introduction to first principle/ab initio methods, applications in materials research

Density functional theory – Electron density, energy terms, exchange correlation functionals, Generalized gradient approximation (GGA), Pseudopotential, DFT exercises

Molecular dynamics - Introduction - Classical mechanics, molecular statics, molecular dynamics; interatomic potentials, Solution for Newton's equations of motion – different algorithms.

Molecular dynamics - Initialization and Integration, energy minimization, estimation of thermodynamic properties, structural properties, thermal properties, MD simulations using LAMMPS

Monte Carlo methods - Introduction, ensembles, algorithms, monte carlo for atomic systems, Modified monte carlo methods-Kinetic Monte Carlo method, Applications of Monte Carlo simulations in different material systems, nucleation and grain growth.

References

1.	Lesar, R., Introduction to computational materials science: Fundamentals to applications,					
	Cambridge University Press, UK, 2013.					
2.	Lee, J.G., Computational Materials Science: An Introduction, CRC Press, Boca Raton, 2017					
3.	Ohno K, Esfarjani k, Kawazoe Y, Computational materials science: From ab-initio to monte					
	carlo methods, 2 nd Ed, Springer-Verlag GmbH Germany, 2018					

Course Outcomes (CO)

CO1	To perform density functional theory simulations to obtain various material properties						
CO2	To understand the principles of molecular dynamics simulations and their fundamentals						
CO3	To perform molecular dynamics simulations for obtaining thermodynamic, structural and						
	thermal properties of different materials.						
CO4	To apply the Monte Carlo simulation methods in materials research.						

M.Tech – Industrial Metallurgy

Department of Metallurgical and Materials Engineering

Course Code	Course Title	СО	Course outcomes At the end of the course, students will be able	PO1	PO2	PO3
MT767	Molecular Modeling of Materials	CO1	To perform density functional theory simulations to obtain various material properties	M	M	M
		CO2	To understand the principles of molecular dynamics simulations and their fundamentals	Н	L	Н
		CO3	To perform molecular dynamics simulations for obtaining thermodynamic, structural and thermal properties of different materials.	Н	Μ	H
		CO4	To apply the Monte Carlo simulation methods in materials research.	М	M	М