MASTER OF TECHNOLOGY

POWER ELECTRONICS

CURRICULUM

EFFECTIVE FROM 2024-2025 ONWARDS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY TIRUCHIRAPPALLI-620015

Master of Technology (Power Electronics)

CURRICULUM

(Effective from 2024 - 25 Onwards)

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY TIRUCHIRAPPALLI - 620 015, INDIA

VISION OF THE INSTITUTE

To be a university globally trusted for technical excellence where learning and research integrate to sustain society and industry.

MISSION OF THE INSTITUTE

To offer undergraduate, postgraduate, doctoral and modular programmes in multidisciplinary / inter-disciplinary and emerging areas.

To create a converging learning environment to serve a dynamically evolving society.

To promote innovation for sustainable solutions by forging global collaborations with academia and industry in cutting-edge research.

To be an intellectual ecosystem where human capabilities can develop holistically.

VISION OF THE DEPARTMENT

To be a centre of excellence in Electrical Energy Systems.

MISSION OF THE DEPARTMENT

Empowering students and professionals with state-of-art knowledge and Technological skills.

Enabling Industries to adopt effective solutions in Energy areas through research and consultancy.

Evolving appropriate sustainable technologies for rural needs.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The major objectives of the M.Tech. Programme in Power Electronics are to equip the students with adequate knowledge and skills in Power Electronics Engineering and to prepare them for the following career options:

- **PEO1** Research programmes in power electronics and related areas
- **PEO2** Employment in R & D organisations related to sustainable technologies
- PEO3 To work in power electronic circuit design and fabrication industries
- **PEO4** Faculty positions in reputed institutions

PROGRAMME OUTCOMES

A student who has undergone M.Tech. Programme in Power Electronics (PE) will have the following:

- **PO1** An ability to independently carry out research/investigation and development work to solve practical problems.
- **PO2** An ability to write and present a substantial technical report/document.
- **PO3** Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.

CURRICULUM STRUCTURE

M.Tech. (POWER ELECTRONICS)

Components	No. of Courses	No. of Credits
Programme Core (PC)	3/semester	
	3/semester	42
Programme Elective (PE)	(6/year)	
Essential Laboratory Requirements (ELR)	3/year	6
Internship / Industrial Training / Academic Attachment (I/A)	1	2
Open Elective (OE) / Online Course (OC)*	2	6
Project Phase-I	1	12
Project Phase-II	1	12
Total Credits		80

* Open Elective (OE) / Online Course (OC) can be completed between I – IV semester

CURRICULUM

The total minimum credits for completing the M.Tech. Programme in Power Electronics is 80.

SI. No.	Code	Course of Study	Credit
1	MA603	Advanced Engineering Mathematics	4
2	EE651	Power Converters	4
3	EE653	Linear and Non-Linear System Theory	4
4		Programme Elective I	3
5		Programme Elective II	3
6		Programme Elective III / Online (NPTEL)	3
7	EE657	Design and Simulation of Power Electronic Circuit Laboratory	2
8	EE659	Power Electronics Systems Laboratory	2
		Total	25

SEMESTER I

SEMESTER II

SI. No.	Code	Course of Study	Credit
1	EE652	Switched Mode Power Conversion	4
2	EE654	Power Electronic Drives	4
3	EE656	Industrial Control Electronics	4
4		Programme Elective IV	3
5		Programme Elective V	3
6		Programme Elective VI / Online (NPTEL)	3
7	EE658	Power Converters and Drives Laboratory	2
		Total	23

SUMMER TERM (Evaluation in the III semester)

Code	Course of Study	Credit
EE713	Internship / Industrial Training / Academic Attachment (I/A) (6 weeks to 8 weeks)	2

SEMESTER III

Code	Course of Study	Credit
EE709	Project Work - Phase I	12
	Total	12

SEMESTER IV

Code	Course of Study	Credit
EE710	Project Work - Phase II	12
	Total	

OPEN ELECTIVES

(Open Elective (OE) / Online Course (OC) can be completed between I – IV semester)

Code	Course of Study	Credit
	Open Elective I	3
	Open Elective II	3
	Total	6

LIST OF OPEN ELECTIVES

SI. No.	Code	Course Title	Credit
1	EE687	Electric and Hybrid Vehicles	3
2	EE712	Home Energy Management Systems	3

Note:

- Department will give the list of recommended online courses for PE and OE in every session.
- Students shall opt the online courses from the list of recommended courses by any department of the institute as open elective.
- MICROCREDITS (MC) (Students can opt 3 courses of 1 credit (4 weeks) each as microcredits instead of 1 OE/OC)

LIST OF PROGRAMME ELECTIVES

SI.	Course		Cradit
No.	Code	Course The	Credit
1.	EE661	Flexible AC Transmission System	3
2.	EE662	High Voltage DC Transmission	3
3.	EE664	Advanced Digital Signal Processing	3
4.	EE665	Advanced Digital System Design	3
5.	EE667	Neural Networks and Deep Learning	3
6.	EE668	Digital Controllers in Power Electronics Applications	3
7.	EE669	Computer Networking	3
8.	EE670	Electrical Distribution Systems	3
9.	EE671	Fuzzy Logic Control Systems	3
10.	EE672	Transient Over Voltages in Power Systems	3
11.	EE673	Renewable Power Generation Technologies	3
12.	EE674	Power System Planning and Reliability	3
13.	EE675	Modeling and Analysis of Electrical Machines	3
14.	EE676	Power Quality	3
15.	EE677	Power System Restructuring and Pricing	3
16.	EE678	Computer Relaying and Wide Area Measurement Systems	3
17.	EE680	Smart Grid Technologies	3
18.	EE681	Electrical Systems in Wind Energy	3
19.	EE684	Distributed Generation and Micro-Grids	3
20.	EE685	Control Design Techniques for Power Electronic Systems	3
21.	EE688	Principles of VLSI Design	3
22.	EE689	Advanced Topics in Power Electronics Applications	3
23.	EE690	Design Techniques for SMPS	3
24.	EE691	Energy Storage Systems	3
25.	EE692	Digital Simulation of Power Electronic Systems	3
26.	EE693	PWM Converters and Applications	3
27.	EE695	Digital Control Systems	3
28.	EE696	Power System Automation	3
29.	EE698	Grid Converters for Renewable Energy Applications	3
30.	EE699	Topics in Power Electronics and Distributed Generation	3
31.	EE700	Wireless Sensor Networks and Applications	3
32.	EE701	Soft Switching Power Converters	3
33.	EE702	Solar PV Systems	3
34.	EE703	E-Vehicle Technology and Mobility	3
35.	EE704	Design of Embedded Controllers for Smart Micro-Grid	3
36.	EE705	Design of Magnetics for Power Electronic Applications	3

37.	EE706	Power Management Integrated Circuits	3
38.	EE708	Electric Vehicle Charging Systems	3

Course Code & Name	MA603 Advanced Engineering Mathematics					
Course Type	Core No of Credits 4					
Course Learning Objective (CLO)	 To learn essential optimization techniques for applying day to day problems. To learn the numerical techniques to solve ordinary differential equations. To learn the fundamentals of probability & statistical methods to apply in practical problems. 					
Prerequisites	-					

	CO-PO Matrix					
Course		Aligned Programme		amme		
Outcomes	Upon completion of the course, the students will be able to	Outcomes (POs)		POS)		
(COs)		PO1	PO2	PO3		
CO1	Apply appropriate optimization technique and analyze unconstrained one dimensional problems.	1	-	-		
CO2	Apply appropriate optimization technique and analyse unconstrained multi-dimensional problems.	1	-	-		
CO3	Appraise and evaluate constrained optimization problems related to Power Systems/Power Electronics by appropriate methods.	1	-	-		
CO4	Solve ordinary differential equations numerically.	1	-	-		
CO5	Demonstrate applications of probability theory	2	-	-		

(Correlation levels 1, 2 or 3 as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High), "-" for no correlation)

Course Content:

Introduction to Linear Programming Techniques- Unconstrained one dimensional optimization techniques - Necessary and sufficient conditions – Unrestricted search methods - Fibonacci and Golden section method.

Unconstrained n dimensional optimization techniques –Descent methods - Steepest descent, conjugate gradient. Constrained optimization Techniques - Necessary and sufficient conditions – Equality and inequality constraints - Kuhn-Tucker conditions - Gradient projection method

Numerical Solution of Ordinary Differential Equations- Euler's method - Euler's modified method - Taylor's method and Runge-Kutta method for simultaneous equations and 2nd order equations - Multistep methods - Milne's and Adams' methods.

Random variable – two dimensional random variables – standard probability distributions – Binomial Poisson and normal distributions - moment generating function.

Sampling distributions – confidence interval estimation of population parameters – testing of hypotheses – Large sample tests for mean and proportion – t-test, F-test and Chi-square test – curve fitting-method of least squares.

- 1. Rao,S.S., 'Optimization : Theory and Application', Wiley Eastern Press, 2nd edition 1984.
- 2. Taha, H.A., 'Operations Research An Introduction', Prentice Hall of India, 2003.
- 3. Jain, M.K., Iyengar, S.R., and Jain, R.K., 'Numerical Methods for Scientific and Engineering Computation', Wiley Eastern, 1992.
- 4. S. C. Gupta, Fundamentals of Statistics, Himalaya Publishing House, Seventh Revised Edition, 2009.
- 5. S.C. Gupta and V.K. Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand and Sons, Eleventh Revised Edition.

Course Code & Name	EE651 Power Converters						
Course Type	Core	No of Credits		4			
Course Learning Objective (CLO)	To give a systematic approach for transient and steady state analysis of all power electronic converters with passive and active loads.						
Prerequisites	Power Electronics in UG						
	CO-PO	O Matrix					
Course Outcomes	Upon completion of the course, to	the students will be able	Alig O	ned Pro utcomes	ogramme s (POs)		
(COs)	10		PO1	PO2	PO3		
CO1	Study and analyze transient respons circuits	e of basic power electronic	3	2	3		
CO2	Understand the working of various p	ower converters.	3	2	3		
CO3	Analyze and design various power co	onverter systems.	3	3	3		

Analysis of power semiconductor switched circuits with R, L, RL, RC loads, DC motor load, battery charging circuit.

Single-Phase and Three-Phase AC to DC converters-half controlled configurations- operating domains of three phase full converters and semi-converters – Reactive power considerations

Analysis and design of DC to DC converters- Control of DC-DC converters, Buck converters, Boost converters, Cuk converters

Single phase and Three phase inverters, Voltage source and Current source inverters, Voltage control and harmonic minimization in inverters

AC to AC power conversion using voltage regulators, choppers and cyclo-converters, consideration of harmonics, introduction to Matrix converters

- 1. Ned Mohan, Undeland and Robbin, 'Power Electronics: converters, Application and design', John Wiley and sons. Inc, New York, 2006.
- 2. Rashid M.H., 'Power Electronics-Circuits, Devices and Applications', Prentice Hall India, New Delhi, 2009.
- 3. P.C Sen., 'Modern Power Electronics', Wheeler publishing Company, 1st Edition, New Delhi, 2005.

Course Code							
& Name	EE653 Linear and Non-Linear System Theory						
Course Type	Core	No of Credits		4			
Course Learning Objective (CLO)	The main objective of this course is to understand the fundamental of physical systems in terms of its linear and nonlinear models. Exploit the properties of linear systems such as controllability and observability						
Prerequisites	Basic Control, Linear Algebra						
	CO P(• Matrix					
Course			Alic	ned Pro	gramme		
Outcomes	to	ine students will be able	0	utcome	s (POs)		
(COs)			P01	PO2	PO3		
CO1	Understand and model physical system	ems using state vectors	2	3	2		
CO2	Analyze the stability of linear system	Analyze the stability of linear systems.					
003	Understand and analyze non-line	ar systems using linear	2	2	2		
CO4	approximations.	an operative damig integri	3	3	3		
CO5	Inspect the stability of non-linear sys methods	Inspect the stability of non-linear systems by direct and indirect 3 1 3 methods					
Course Cont	ent:						
Introductior equations a	n to state space modeling, modeling	g of physical systems. Sol	ution to	vector	differential		
Stability an conditions.	alysis of linear systems. Controllab Detectability and Stabilizability, Ka	bility and Observability def Iman decomposition.	finitions	and Ka	alman rank		
State feedl algorithm. I	back controller design using pole LQR and LQG controller design	placement. Observer de	esign u	sing Ka	ılman filter		
Introductior approximat qualitative	n to nonlinear systems. Phase ion. Limit cycle and periodic so pehavior near singular points.	plane analysis of nonlin lutions. Singular points	ear sy (equilit	stem u prium p	sing linear oints) and		
Stability of relative sta	nonlinear systems. Lyapunov direc bility	ct and indirect methods. In	nput-to	-state st	tability and		
Reference Bo	ooks:						
1. Ogata, K., 'I	Modern Control Engineering', Prentice	Hall of India, 2010.					
2. C.T. Chen,	Linear Systems Theory and Design" C	Dxford University Press, 3rd I	Edition,	1999.			
3. M. Vidyasag 07632.	gar, 'Nonlinear Systems Analysis', 2nd	d edition, Prentice Hall, Eng	lewood	Cliffs, N	ew Jersey		
4. Hassan K. Edition.	Khalil, 'Nonlinear Systems', Pearson E	Educational International Inc	. Upper	Saddle	River, 3rd		

Course Co & Name	EE657 Design and Simulation of Pow	er Electronio	c Circ	uits La	boratory			
Course Ty	e Laboratory No of	Credits		2				
Course Learning Objective (CLO)	The experiments will be conducted based requirement of the load, the ratings of comp C are identified using standard steady state e through simulations in relevant software and	The experiments will be conducted based on the following criteria. From the requirement of the load, the ratings of components such as power devices, L and C are identified using standard steady state equations. The performance is verified through simulations in relevant software and the design can be validated.						
Prerequisi	Basics of Power Electronics							
	CO-PO Matrix							
Course	Upon completion of the course, the students will be able		Aligned Programme		gramme			
(COs)	to	to		PO2	PO3			
CO1	Design of conventional power electronic converter DC, DC-DC, DC-AC, AC-AC converters.	s such as AC-	2	2	2			
CO2	Steady state analysis of various power electronic	converters	2	2	2			
CO3	Simulation, testing and applications of various po converters.	wer electronic	2	2	2			
Course C	ontent:							
1) Si	gle-phase and three-phase half-controlled rectifie	ers						
2) Si	gle-phase and three-phase fully-controlled rectifie	ers						
3) Bu	ck, Boost and Buck-Boost converters							
4) Si	gle-phase and three-phase Voltage-source invert	ters						
5) Si	gle-phase and three-phase Current-source invert	ers						
6) Si	gle-phase and three-phase AC voltage regulators	3						

Course Code & Name	EE659 Power Electronics Systems Laboratory						
Course Type	Laboratory	No of Credits		2			
Course Learning Objective (CLO)	To enhance the hardware concepts for the elements of Power Electronic System						
Prerequisites	Basics of Power Electronics						
Course	CO-PO Matrix						
Outcomes	Upon completion of the course, the students will be able				(POs)		
(COs)	to		PO1	PO2	PO3		
CO1	Understand the switching character Switches	istic of Power Electronics	3	2	2		
CO2	Develop the various elements of Pov	ver Electronic Systems	3	2	3		
CO3	Test and Evaluate the Power Electro	nic Converters	3	3	3		
Course Cont	ent:						
1. Study	and analysis of generic Power Ele	ctronic Converter					
2. Analys	se the switching characteristics of I	Power Electronic Devices					
3. Desigr	n of high frequency inductor/transfe	ormer for Power Electronic	c applic	ations			
4. Desigr	n of MOSFET/IGBT gate drivers						
5. Introdu	uction to programming with digital	controllers					

- 6. PWM Generation using Digital Controller- Part 1
- 7. PWM Generation using Digital Controller-Part 2
- 8. Test and verification of Power Electronic Converter
- 9. Mini-Project

Course Code & Name	EE652 Switched Mode Power Conversion							
Course Type	Core	No of Credits		4				
Course Learning Objective (CLO)	Understand the concepts, operation, analysis, control and magnetics design of switched- mode power converters							
Prerequisites	Power Converters							
Course	СО-РО	D Matrix	Alic	unod Pro	arammo			
Outcomes	Upon completion of the course, t	he students will be able		utcome	s (POs)			
(COs)	to		PO1	PO2	PO3			
CO1	Understand the concepts and operation converters	on of switched mode power	3	2	3			
CO2	Develop steady state analysis and power converters	design of switched mode	3	3	3			
CO3	Model and design of control techn power converters	niques for switched mode	3	3	3			
CO4	Apply concepts of SMPC in case stu	dies	3	3	3			
Course Con	ent:							
Design constr and capacitor	aints of reactive elements in Power s for power electronic applications,	Electronic Systems: Desi filter design	gn of in	ductor,	transformer			
Basic concep converters: P characteristic	its and steady-state analysis of WM DC - DC Converters (CCM and s, comparisons and selection criter	second and higher orde d DCM) - operating princip ia	er Swite oles, co	ched N Instituer	lode power nt elements,			
Dynamic Mod of converter t programmed	elling and control of second and hig ransfer functions, Design of feedba and critical conduction mode contro	her order switched Mode ack compensators, currer bl	power o nt progr	converte cammed	ers: analysis I, frequency			
Soft-switching converters, M	DC - DC Converters: zero-volt ulti-resonant converters and Load	age-switching converters	s, zero	-current	t- switching			
Pulse Width M of the currer rectifiers and	lodulated Rectifiers: Properties of ic t waveform, single phase and th design examples	leal rectifier, realization of nree-phase converter system	near id stems	leal rect incorpo	ifier, control rating ideal			
Reference B	ooks:							
1. Rober Editior	W. Erickson and Dragan Maksimovic , 2001.	, 'Fundamentals of Power	Electror	nics', Spi	ringer, 2nd			
2. Mariar 1st Ed	K. Kazimierczuk, 'Pulse-width Modula ition, 2008.	ted DC-DC Power Converte	rs' John	Wiley &	Sons Ltd.,			
3. Batars	eh, 'Power Electronic Circuits', John W	/iley, 2nd Edition, 2004.						
4. H. W. Sons I	Whittington, B. W. Flynn, D. E. Macph nc., 2nd Edition, 1997	erson, 'Switched Mode Pow	er Supp	lies', Joł	hn Wiley &			
5. Simon	Ang, Alejandro Oliva "Power-Switching	g Converters",3rd edition, Cl	RC Pres	s, 2010.				
6. Abrah McGra	am Pressman, Keith Billings and Tayl w-Hill Professional, 2009.	or Morey "Switching Power	Supply	[,] Design	", 3rd Ed.,			
L								

Course Code									
& Name	EE654 Power Electronic Drives								
Course Type	Core No of Credits 4								
Course Learning Objective (CLO)	To introduce basic concepts of load and drive interaction, speed control concepts of ac and dc drives, speed reversal, regenerative braking aspects, design methodology.								
Prerequisites	A course in Power Electronics and Electrical Machines.	A course in Power Electronics and Electrical Machines.							
	CO-PO Matrix								
Course Outcomes (COs)	Upon completion of the course, the students will to	be able	Alig Ou PO1	ned Pro utcomes	ogramme s (POs) PO3				
CO1	Understand and analyze dc and ac motors supplied different power converters.	ed from	3	3	2				
CO2	Simulate and study motor characteristics with different co configurations.	onverter	3	3	3				
CO3	Design and implement a prototype drive system.		3	3	3				
Course Cont Basic powe systems. Se	ent: er electronic drive system, components. Different ty tability of power electronic drive.	pes of Ic	oads, s	haft-loa	d coupling				
Convention DC motor d	al methods of DC motor speed control, single phas Irive. Power factor improvement techniques, four qu	se and th adrant op	nree ph peratio	ase coi n.	nverter fed				
Chopper fe choppers, r	d drives, input filter design. Braking and speed re nultiphase choppers. PV fed DC drives.	versal of	f DC m	notor dr	ives using				
Conventional methods of induction motor speed control. Solid state controllers for Stator voltage control, soft starting of induction motors, Rotor side speed control of wound rotor induction motors. Voltage source and Current source inverter fed induction motor drives – d-q axis modeling and vector control									
Speed control of synchronous motors, field-oriented control, load commutated inverter drives, switched reluctance motors and permanent magnet motor drives. Introduction to design aspects of machines.									
Reference Bo	ooks:								
1. P.C Sen 'Th	nvristor DC Drives', John Wiley and Sons, New York, 199	1.							
2 R Krishnan	'Electric Motor Drives – Modeling Analysis and Control'	Prentice	Hall of L	ndia Put	Itd New				

- R. Krishnan, 'Electric Motor Drives Modeling, Analysis and Control', Prentice-Hall of India Pvt. Ltd., New Delhi, 2003.
- 3. Bimal K .Bose, 'Modern Power Electronics and AC Drives', Pearson Education (Singapore) Pvt. Ltd., New Delhi, 2003.

Cou &	rse Code Name	EE656 Industrial Control Electronics						
Cou	rse Type	Core	No of Credits		4			
C Le Ol	course earning ojective (CLO)	 Comprehend various control electronics used in the industries. Know and appreciate the key factors in design of analog and digital controllers. Implement power electronic circuits for practical applications 						
Prer	equisites	Fundamental knowledge about Anal	og, Digital and Power Electro	onic Circuit	3.			
		CO-P	O Matrix					
C	ourse	Lipon completion of the course	the students will be able	Aligne	d Prograr	nme		
Ou	tcomes	to		Outc	omes (PC	Ds)		
	CO1	Understand the working of various p components used in industrial applic	ower electronic circuits and ations	2	2	3		
	CO2	Analyze various analog controllers	s and signal conditioning	2	2	3		
	CO3	Design control circuits for industrial a	applications	3	3	3		
Cou	irse Cont	ent:						
R to e c	eview of opologies, nergy sto haracterist	uninterrupted power supplies - solid state circuit breakers and s prage systems, battery, ultra-ca tics and applications. f sensors in industrial applications	offline and on-line topolo solid-state tap changing o apacitors, flywheel ener s – current sensors, current	ogies - ar of transfor rgy stora nt transfor	nalysis o mer - ac ge, fuel rmer, hall	f UPS lvance cells effect		
s p	ensors - versors - ve rotection c	oltage sensors, non-isolated meas of power components – speed sen	surement, hall effect, temp sors – position sensors.	perature s	ensors, tł	nermal		
A d ir to	nalog con erivative o nstrumenta o voltage c	trollers - proportional controllers, verrun, integral windup, cascaded ation amplifiers – voltage to current converters	proportional – integral co l control, feed forward con , current to voltage, voltag	ntrollers, trol. Signa e to freque	PID contr al conditio ency, freq	rollers, oners - luency		
S re c h	olid state elationship ontrol and eating, cla	welding power source - introduction and its measurements, control dual control- pulsing techniques ssification, characteristics - applic	on, classification, basic cha of volt ampere character – testing of welding powe cations	aracteristi istics, vol [:] er source.	cs, volt a t control, Introduc	mpere slope tion to		
lr a fu s	ntroduction nd data a unctions, S ystems.	to programmable logic controller acquisition (SCADA) Systems, o CADA application functions in elec	rs, architecture, programn components of SCADA ctrical engineering. Energy	ning. Sup systems, y saving ir	ervisory o SCADA electrica	control basic Il drive		
Ref	erence Bo	ooks:						
1. N	/lichael Jac	ob, 'Industrial Control Electronics – Ap	pplications and Design', Pren	tice Hall, 1	995.			
2. T	Thomas E. k	Kissell, 'Industrial Electronics', Prentice	e Hall India, 2003 2. Curtis D.	. Jhonson '	Process C	ontrol		
3. N	/lehrdad Eh /ehicles Fui	sani, Yimin Gao, Sebastien E. Gay, A ndamentals. Theory and Design' CRC	li Emadi 'Modern Electric, Hy Press 2004.	ybrid Electr	ic and Fue	el Cell		
4. N F	<i>I</i> ini S. Tho Francis.	mas, John D McDonald, Power Syste	ems SCADA and Smart Gri	d, CRC Pr	ess, Taylo	or and		
5. V	Velding Har	ndbook, Volume-2, Seventh Edition, A	merican Welding Society.					
6. F	Power Elec Safeguards	tronics Applied to Industrial System and Energy Storage, Imprint - ISTE P	s and Transports. Volume ress – Elsevier.	5: Measur	ement Ci	rcuits,		

Course Code & Name	EE658 Power Converters and Drives Laboratory						
Course Type	Laboratory	No of Credits		2			
Course Learning Objective (CLO)	To facilitate in-depth understanding of power converter topologies and its operation with typical electric machines						
Prerequisites	Power Electronics, Electric Drives	Power Electronics, Electric Drives					
	CO-PO	O Matrix					
Course Outcomes	Upon completion of the course, t	he students will be able	Aligne Outc	d Prograr omes (PC	nme)s)		
(COs)	10		P01	PO2	PO3		
CO1	design and simulate various power c	onverter topologies	3	3	2		
CO2	implement control techniques for ele	ctric drive systems	3	3	3		
CO3	fabricate and test power converters		3	3	3		

List of Experiments:

- 1. Simulation of a power factor corrected (PFC) AC-DC converter
- 2. Simulation of isolated DC-DC converters
- 3. Simulation of a vector-controlled induction motor
- 4. Simulation of a direct torque-controlled induction motor
- 5. Gate pulse generation using FPGA/DSP controller and gate driver design for MOSFET
- 6. Experimental study on a permanent magnet brushless dc machine
- 7. Experimental study on a permanent magnet synchronous machine
- 8. Design and hardware implementation of a DC-DC converter
- 9. Design and hardware implementation of an AC-AC matrix converter
- 10. Experimentation on a switched reluctance motor drive

- 1. R. Krishnan, 'Electric Motor Drives Modeling, Analysis and Control', Prentice-Hall of India Pvt. Ltd., New Delhi, 2003
- 2. Ali Emadi, "Handbook of Automotive Power Electronics and Motor Drives", Taylor & Francis, 2005
- 3. Bimal K. Bose, 'Modern Power Electronics and AC Drives', Pearson Education (Singapore) Pvt. Ltd., New Delhi, 2003
- 4. Robert W. Erickson and Dragan Maksimovic, 'Fundamentals of Power Electronics', Springer, 2nd Edition, 2001
- 5. Ned Mohan, Undeland and Robbin, 'Power Electronics: Converters, Application and Design', John Wiley and sons. Inc, New York, 2006.

Course Cod & Name	EE661 Flex	tible AC Transmissio	n Systei	n			
Course Typ	Elective	No of Credits		3			
Course Learning Objective (CLO)	Course Learning Objective (CLO) To familiarize students with the transmission challenges of modern electrical power systems. The course will present the basic concepts, principles and operation of fast high power electronic controllers known as Flexible AC Transmission Systems (FACTS) that enhance power system stability and effectively increase transmission capacity thus yielding significantly higher flexibility of operation. The course will focus on concepts and applications various configurations of FACTS controllers. Both thyristor based and also voltage source converters based FACTS Controllers are discussed						
Prerequisite	B Power System Analysis, Power Conve	rsion Techniques or equiva	llent				
	CO-	PO Matrix					
Course Outcomes	Upon completion of the course, the	e students will be able	Aligned	Programn (POs)	ne Outcomes		
(COs)	to		PO1	PO2	PO3		
CO1	Describe the principles of series/ compensation to enhance the power flo systems	shunt reactive power ows in conventional power	1	2	1		
CO2	Explain the mechanism of performa transmission system network with th typical FACTS controller for series/ shu	nce enhancement of a he implementation of a int reactive compensation	2	2	2		
CO3	Analyse the modes of operation and c of different topologies of series and s controllers	compute the performance shunt connected FACTS	2	2	3		
CO4	Explain the capability of different types of reference to exchange of active and power system network	of FACTS controllers with reactive power with the	2	2	3		
Course Co	ntent:						
Fundame FACTS o	ntals of ac power transmission - trans ontrol considerations - FACTS controll	smission problems and lers	needs - e	mergence	e of FACTS -		
Principle Synchroi	of shunt compensation – Variable ous Compensator (STATCOM) config	Impedance type & sw uration - characteristics	vitching c and contr	onverter 1 ol	type - Static		
Principle Synchroi	s of static series compensation usi ous Series Compensator (SSSC)	ng GCSC, TCSC and	TSSC -	- applicati	ons - Static		
Principle phase sh	of operation - Steady state model ifters - power circuit configurations	and characteristics of	a static	voltage re	egulators and		
UPFC - I - compar	Principles of operation and characterist son of UPFC with the controlled series	tics - independent active s compensators and pha	and reac	tive powe s.	r flow control		
Reference	Books:						
1. Song, Y. Press, Lo	I. and Allan T. Johns, 'Flexible AC Transn ndon, 1999.	nission Systems (FACTS)'	, Institution	of Electric	al Engineers		
2. Hingoran 2000 ISB	,L. Gyugyi, 'Concepts and Technology of N –078033 4588.	f Flexible AC Transmissior	n System',	IEEE Pres	s New York,		
3. Mohan M	lathur R. and Rajiv K. Varma,'Thyrist IEEE press, Wiley Inter science,2002.	tor - based FACTS cont	rollers for	Electrical	transmission		
4. Padiyar k Edition, 2	.R., 'FACTS controllers for Transmission ar 007.	nd Distribution systems' Ne	w Age Inte	rnational P	ublishers, 1st		
5. Enrique A simulatio	cha, Claudio R. Fuerte-Esqivel, Hugo Aml in Power Networks' John Wiley & Sons, 2	briz-Perez, Cesar Angeles 2002.	-Camacho	'FACTS –ľ	Modeling and		

Course Code & Name	EE662 Hig	EE662 High Voltage DC Transmission						
Course Type	Elective	No of Credits		3				
Course Learning Objective (CLO)	To facilitate the students unders transmission system and its appli	To facilitate the students understand the basic concepts and recent trends in HVDC transmission system and its applications.						
Prerequisites	Basic knowledge in Circuit Analysi Devices and Circuits.	s, Control Systems, Power	System a	and Power	r Electronic			
Course Outcomes	Upon completion of the course, the students will be able		Aligned Programme Outcomes (POs)					
(COs)	to		PO1	PO2	PO3			
CO1	Appraise the need of HVDC teo transmission and choose appropria converter.	chnology for bulk power te type of HVDC link and	2	2	3			
CO2	Analyse the operation of Graetz circ without and with overlap	uit as rectifier and inverter	2	2	3			
CO3	Evaluate the operation and efficacy analyse the different faults in HVDC	of different controllers and systems	3	3	3			
CO4	Discriminate and evaluate the issue reactive power control and protection	es related with harmonics, of HVDC system.	3	3	3			
CO5	Recognize and appraise the recent tro systems	ends in HVDC transmission	3	3	3			

Introduction to HVDC transmission, Comparison between HVAC and HVDC systems - economic, technical and reliability, limitations, Types of HVDC links - monopolar, bipolar and homopolar links, Components of HVDC transmission system

Analysis of HVDC Converters, Rectifier and Inverter operation of Graetz circuit without and with overlap. Output voltage waveforms and DC voltage in both rectifier and inverter operation, Equivalent circuit of HVDC link.

Basic means of HVDC system control, desired features, power reversal, Basic controllers - constant ignition angle, constant current and constant extinction/ advance angle control, power control, high level controllers. Converter maloperations - misfire, arc through, commutation failure

Harmonics in HVDC system - Characteristic and uncharacteristic harmonics - troubles due to harmonics - harmonic filters - active and passive filters - Reactive power control of converters, Protection issues in HVDC, over voltage and over current protection, voltage and current oscillations, DC reactor design, DC Circuit breakers

Recent trends in HVDC transmission-CCC based HVDC system, VSC based HVDC system– Multiterminal HVDC systems and HVDC system applications in wind power generation, Interaction between AC and DC systems

- 1. Kimbark, E.W., 'Direct Current Transmission-vol.1', Wiley Inter science, New York, 1971.
- 2. Padiyar, K.R., 'HVDC transmission systems', Wiley Eastern Ltd., 2010.
- 3. Kamakshaiah, S and Kamaraju, V, 'HVDC Transmission', 1st Edition, Tata McGraw Hill Education (India), New Delhi 2011.
- 4. Arrilaga, J., 'High Voltage Direct Current Transmission', 2nd Edition, Institution of Engineering and Technology, London, 1998.
- 5. Vijay K. Sood, 'HVDC and FACTS Controllers', Kluwer Academic Publishers, New York, 2004.

Course Code & Name	EE664 Advanced Digital Signal Processing						
Course Type	Elective	No of Credits		3			
Course Learning Objective (CLO)	 Review and understanding of discrete-time systems and signals, Discrete- Time Fourier Transform and its properties, the Fast Fourier Transform. Design of Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters, implementation of digital filters 						
Prerequisites	Familiarity with Signals and Systems	and Scientific Programming	Language				
	CO-PC	D Matrix					
Course Outcomes	Upon completion of the course, the students will be able			d Prograr omes (PC	nme Ds)		
(COs)	10		PO1	PO2	PO3		
CO1	Understand the basics of discrete-tin Transforms	2	2	2			
CO2	Perform discrete-time Fourier Trans Transform	form and discrete Fourier	3	2	2		
CO3	Design and analyse digital filters.		3	3	2		
CO4	Understand the multirate DSP system	ns	2	3	3		
CO5	Analyse the power spectrum estimati	on	2	3	3		
Course Cont	ent:				_		
Review of Discrete-Time Signal & LTI Systems: Convolution, System representation in Z- Transform domain, Inverse Z-Transform, System characterization in Z-domain.							
Fourier Trar Structures, F	Fourier Transforms: Discrete Fourier Transform, FFT Algorithm, Radix-2 DIT & Radix-2 DIF Structures, Higher Radix schemes.						

Filter Design and Filter Structures: Classification of digital filters, design and implementation of IIR filters, design of FIR filters

Sampling and Multirate DSP: Aliasing, Quantization, Decimation, Interpolation, Arbitrary sampling rate conversion.

Power Spectrum Estimation: Introduction to Non-parametric and parametric methods, Eigen analysis Algorithms

- 1. John G. Proakis and Dimitris G. Hanolakis, 'Digital Signal Processing, Principles, Algorithms & Applications' 4th Edition, Pearson Education, 2006.
- 2. Oppenheim and Schaffer, 'Discrete time Signal processing', Pearson Education, 2007.
- 3. Sanjit K Mitra: Digital Signal Processing, Third Edition, Tata McGraw Hill Edition- 2006.
- 4. Ludemann L. C., 'Fundamentals of Digital Signal Processing', Harper and Row publications, 2009.
- 5. P.P. Vaidyanathan: Multirate Systems and Filter Banks, Pearson Education India 2006.

Course Code	Course Code EE665 Advanced Digital System Design						
& Name							
Course Type	Elective No of Credits 3						
Course To impart the knowledge on the advanced topics of Digital systems, design aspects and testing of the circuits. Objective (CLO) To impart the knowledge on the advanced topics of Digital systems, design aspects							
Prerequisites	Digital Electronics						
	CO PO N	Antrix					
	CO-PO N	hatrix	A 12				
Course	Upon completion of the course, the	students will be able	Aligne	d Progran	nme		
Outcomes	to			omes (PC)S)		
(COs)		<i>a</i> 1 2 <i>2</i>	P01	P02	P03		
C01	Understand the concepts of synchronou	is sequential circuits	2	2	2		
CO2	Formulate the state tables and ASM cha	arts for digital system	3	3	3		
003	Design circuits using programmable log	IC DEVICES	3	2	2		
CO4	Identify faults in the digital circuits.		3	3	3		
005	Analyse and synthesize asynchronous	sequential circuits.	3	3	3		
Course Content: Review of sequential circuits - Mealy & Moore Models - Analysis & Synthesis of Synchronous sequential circuits Digital system design Hierarchy - ASM charts - Hardware description language - Control logic Design Reduction of state tables - State Assignments Analysis and synthesis of Asynchronous sequential circuits - critical and non-critical races - Essential Hazard Combinational and sequential circuit design with PLD's - Introduction to CPLD's & FPGA's. Fault classes and models – Stuck at faults, Bridging faults - Transition and Intermittent faults. Fault Diagnosis of combination circuits by conventional methods - Path sensitization technique - Boolean different method and Kohavi algorithm							
Reference Bo	oks:						
1. Donald D. G	ivone, 'Digital principles and design', Tata	a McGraw-Hill, 2003.					
2. Morris Manc logic design	, 'Digital Design', Prentice Hall India, 3rd , Prentice Hall India, 1984.	Edition, 2007. 3. Samuel	C. Lee, 'Diợ	gital circuit	s and		
3. N. N. Biswa	s, 'Logic Design Theory', Prentice Hall Inc	N. N. Biswas, 'Logic Design Theory', Prentice Hall India, 1993.					

4. ZviKohavi, 'Switching and Finite Automata Theory', Tata McGraw-Hill, 3rd Edition, 2010.

Со	urse Code & Name	EE667 Neural Networks and Deep Learning					
Co	ourse Type	Elective	No of Credits		3		
l C	Course _earning Dbjective (CLO)	To apply artificial neural networks and deep learning in various engineering applications					
Pre	Prerequisites Introduction to Electrical and Electronics Engineering, Basic Mathematics and Probability						
	<u></u>	CO-PC) Matrix	A 12			
	Course	Upon completion of the course, the	he students will be able	Aligne	d Program	nme	
U	(COs)	to		PO1	PO2	PO3	
	CO1	Understand the fundamentals of neur	al networks.	3	2	2	
	CO2	Apply neural networks for various app	olications	3	3	3	
	CO3	Employ deep learning to various and decision outcomes for both 1D and 2	oplications to improve the D data.	3	3	3	
Co	ourse Cont	ent:					
 neuron, Linear Separability- XOR problem, Types of Learning – Supervised/unsupervised-Hebb rule- Delta rule-Perceptron rule- Adaline and Madaline neural networks Back propagation neural networks, Kohonen neural network, Maxnet, Hamming net, Bidirectional Associative Memory, Applications ART architecture – Comparison layer – Recognition layer – ART classification process – ART implementation, Boltzmann Machine, Applications Recurrent Neural Networks: Hopfield networks, Jordan networks, Elman networks, regular RNN-limitations, Long Short-Term Memory, Gated Recurrent Unit, Deep Belief Network, Autoencoders, Applications Convolutional Neural networks-2 Dimensional CNN- LeNet, AlexNet, ZF-Net, VGGNet, GoogLeNet, ResNet -1 Dimensional CNN- 3 Dimensional CNN- 							
Re	Ensemble r	nethods: Bagging and Boosting. tra	ansfer learning, Applicatio	ns			
1	Montin T 1		k H. Doolo (Nound noticed)	dooice? \	ikaa Dulu	ichin-	
1.	House, 2003	agan, Howard B.Demuth, M, and Mai 3.	к п. Beale Neural network	aesign', V	ikas Publ	isning	
2.	Laurene Fa Prentice H	usett, "Fundamentals of Neural. Netv all, 1994.	vorks: Architectures, Algorit	hms, and.	Application	ons",	
3.	Ian Goodfell	ow and Yoshua Bengio and Aaron Cou	urville, Deep Learning, MIT P	Press, 2016	6. J.		
4.	Neural Networks and Deep Learning, Charu C Aggarwal, Second Edition, Springer Publisher, 2023.						

5. Dr. Neeraj Kumar and Dr. Rajkumar, Applied Deep Learning, BPB Publishers, 2023.

Course & Na	Code Ime	EE668 Digital Controllers in Power Electronics Applications					
Course	е Туре	Elective	No of Credits		3		
Cou Leari Objec (CL	rse ning ctive .0)	To enrich the learner with digital controller concepts and its application in the field of Power Electronic Systems					
Prerequ	uisites	Digital Electronics, Digital Signal Pro	cessing, Computer Architect	ure.			
		CO-P	O Matrix				
Cou	rse	Linen completion of the course	the students will be able	Aligne	d Prograr	nme	
Outco	omes	to		Outc	omes (PC	s (POs)	
(CC)s)	10		PO1	PO2	PO3	
CC	01	Understand the architecture of DSP	core and its functionalities	2	3	2	
CC	02	Explain the operation of interrupts ar	nd peripherals	2	3	2	
CC)3	and FPGAs.	mplementation using PLDs	3	3	3	
CC)4	Design of controllers for power conv	erters.	3	3	3	
Pin Purp Con ADC Eve and	Multiple bose I/C trol Reg C Overv nt Mana Quadra	exing (MUX) and General Purpo D Control Registers - Introduction gisters - Initializing and Servicing In iew - Operation of the ADC in the age interrupts - General Purpose ature Enclosed Pulse (QEP) Circui	ose I/O Overview - Multi in to Interrupts - Interrupt interrupts in Software. e DSP - Overview of the E (GP) Timers - Compare try - General Event Manag	plexing a Hierarchy Event man Units - Ca ger Inform	nd Gene v - Interru ager (EV apture Un ation	ral upt /) - iits	
Cod tools for is	e comp s, PWM nterleav	oser studio, Embedded Coding t Generation, Dead band unit, Pha- red converters.	hrough MATLAB and othe se shifted PWM for full brid	er moderr dge conve	n simulati erters, PW	on /M	
Con Indu	trolled I Iction, N	Rectifier - Switched Mode Power Notor Control.	Converters - PWM Invert	ers - DC	motor co	ntrol –	
Refere	nce Bo	oks:					
1. Han Yorł	nid.A.Tol k , 2004.	iyat and Steven G.Campbell, 'DSP Ba	sed Electromechanical Motio	on Control' (CRC Press	s New	
2. XC	3000 sei	ies datasheets (version 3.1). Xilinx, In	ic., USA, 1998.				
3. XC -	4000 sei	ies datasheets (version 1.6). Xilinx, In	ic., USA, 1999.				
4. Way	/ne Wolf	, 'FPGA based system design', Prenti	ce hall, 2004.				
5. Drag Swit	gan Mak ched-Mo	simovic, Luca Corradini, Paolo Matta ode Power Converters' Wiley-IEEE Pr	avelli, Regan Zane 'Digital (ess, 2015.	Control of I	High-Freq	uency	

Course Code & Name	EE669 Computer Networking				
Course Type	Elective	No of Credits		3	
Course Learning Objective (CLO)	This course provides an introduction to the computer networking fundamentals, design issues, functions and protocols of the network architecture				
Prerequisites	Data Structures and Communication Systems.				
	CO-PC) Matrix			
Course Outcomes	Upon completion of the course, the	he students will be able	Aligne Outc	d Progran omes (PC	nme)s)
(COs)	10		P01	PO2	PO3
CO1	Understand the different layers of models and their functions	the network architecture	2	2	2
CO2	Appraise the need of various protoco	ls across different layers	2	2	2
CO3	Suggest a particular routing protocol and congestion technique for an application32				2
 Computer Network – Hardware and Software, OSI and TCP reference Model, Transmission media, Wireless transmission, public switched telephone network - Structure, multiplexing and switching. Data link layer - design issues, Data link protocols. Medium access sub layer - channel allocations, Multiple Access protocols, IEEE protocols. Network layer - Design issues, routing algorithms, congestion control algorithms, QoS , Transport layer- Design issues, Connection management . Application layer – DNs, Electronic mail, World Wide Web, multimedia, Cryptography. Internet transport protocols - TCP and UDP. 					
Reference Bo 1. James F. Ki	ooks: urose and Keith W. Ross, 'Computer No	etworking', Pearson Educati	on, 2nd Ed	ition, 2003	3.
 Tanenbaum Stallings W. 	 Tanenbaum, A.S., 'Computer Networks', Prentice Hall of India, 4th Edition, 2003. Stallings W., 'Data and Computer Communication', Prentice Hall of India, 5th Edition, 2000. 				

Course Code & Name	EE670 Electrical Distribution Sys	stems				
Course Type	Elective No of Credits 3					
Course Learning Objective (CLO)	 To explain the principles of design and operation of electric distribution feeders and other components To make the students to understand the distribution system expansion planning and reliability analysis procedures 					
Prerequisites	Transmission and Distribution of Electrical Energy, Power System	m Analysis				
	CO_PO Matrix					
Course		Aliane	d Program	nme		
Outcomes	Upon completion of the course, the students will be able	Outc	omes (PC	Ds)		
(COs)	to	PO1	PO2	PO3		
CO1	Perform modeling and power flow studies in the distribution systems.	2	3	2		
CO2	Carry out planning and reliability analysis of electrical distribution systems	2	2	3		
CO3	Select the protective components for distribution systems	2	2	2		
 Course Content: Industrial and commercial distribution systems – Energy losses in distribution system – system ground for safety and protection – comparison of O/H lines and underground cable system. Network model – power flow - short circuit and loss calculations. Distribution system - reliability analysis – reliability concepts – Markov model – distribution network reliability – reliability performance Distribution system expansion - planning – load characteristics – load forecasting – design concepts – optimal location of substation – design of radial lines – solution technique. Voltage control – Application of shunt capacitance for loss reduction – Harmonics in the system – static VAR systems – loss reduction and voltage improvement. System protection and grounding – requirement – fuses and section analyzers-over current - Under voltage and under frequency protection – coordination of protective device 						
Reference Bo	ooks:					
1. Pabla, A.S.,	'Electrical Power Distribution System', 5th edition, Tata McGraw h	ill, 2011.				
2. Tuvar Gone	r, 'Electrical Power Distribution System Engineering', McGraw hill,	2008.				

3. Sterling, M.J.H., 'Power System Control', Peter Peregrinus, 1986.

Course Code & Name	EE671 Fuzzy Logic Control Systems					
Course Type	Elective No of Credits 3					
Course Learning Objective (CLO)	To learn fuzzy logic concepts To apply Fuzzy logic principles towards control system design of non-linear plants and model-free systems.					
Prerequisites	requisites Control Systems					
	•					
	CO-P	O Matrix				
Course	Upon completion of the course, the students will be able Aligned Programme					
Outcomes	to		PO1			
	Assimilate the uncertainty concept		3	1	3	
CO2	Apply and analyze fuzzy logic theory	for linear systems	3	2	3	
002	Develop fuzzy logic theory for	non-linear plants and	0	2	0	
CO3	engineering applications.	non modi planto ana	2	3	2	
Course Con	tent:					
Review of Various for	control systems, Modelling of sys ms of ambiguity.	stems, Non-linear plants,	Concept	of uncer	tainty,	
Review of operations	crisp sets. Concept of a Fuzzy Union, Intersection, Complement-	set, commonly employed illustration with case stud	l Fuzzy s ies.	ets. Fuzz	zy set	
Review of controller.	feedback control systems and con Fuzzification, Rule base design, Im	troller design aspects. Ar plication and Defuzzificati	chitecture on metho	of Fuzzy ds.	/ logic	
Fuzzy logic through ite through dy	c controller design through experts arative approach. Adaptive Fuzzy namic response analysis.	s- Direct and Indirect me control schemes. Fuzzy	thods. Fu / logic cc	zzy set o ntroller o	lesign lesign	
Fuzzy decis washing m	sion making, Fuzzy genetic algorith achine, Fuzzy logic control of DC n	nms, Neuro Fuzzy systems notor speed control.	s, Fuzzy c	ontroller	based	
Text Books:						
1. Chen G. Ph	am T, "Introduction to Fuzzy sets. Fuz	zy logic, and Fuzzy control s	ystems". C	RC Press.	2019	
2. D. Driankov Edition)	v, H. Hellendoorn, M.Reinfrank, "An Ir	ntroduction to Fuzzy control	", Springer	, 2013 (Se	econd	
3. Timothy J. edition, 201	Ross, Fuzzy Logic with Engineering . 6.	Applications, John Wiley &	Sons Ltd I	Publicatior	ns, 4 th	
4. Sundareswa	aran K,"A Learner's Guide to Fuzzy Lo	gic Systems" (Second editior	n), CRC Pr	ess, 2019.		
Reference Bo	ooks:					
1. Satish Kum 2013	ar, Neural Networks: A classroom app	proach, Tata McGraw-Hill Pu	blishing Co	ompany Lii	mited,	
2. Zdenko Kov	vacic, Stjepan Bogdan, "Fuzzy Controll	er Design: Theory and Appli	cations", C	RC Press,	2017	

Course Type Elective No of Credits 3 Course Learning Objective (CLO) To make the students familiar with the theoretical basis for various forms of o voltages such as lighting strokes, surges, switching transients etc., and introduce some of the protection measures against such over voltages described. Also to depict the necessity and methods for generating impulse voltage and currents. Prerequisites Advanced Power System Analysis Course (CLO) Upon completion of the course, the students will be able to Aligned Programme Outcomes (POS) Course (COS) Recognize and construct different circuits representing lightning and travelling waves 2 2 CO2 Analyze various switching transients in power systems. 2 2 2 CO3 Appraise voltage surges in different electrical machines 2 3 3	Course Code & Name	EE672 Transient Over Voltages in Power Systems				
Course Learning Objective (CLO)To make the students familiar with the theoretical basis for various forms of o voltages such as lighting strokes, surges, switching transients etc., and introduce some of the protection measures against such over voltages described. Also to depict the necessity and methods for generating impulse voltage and currents.PrerequisitesAdvanced Power System AnalysisCourse Outcomes (COs)Upon completion of the course, the students will be able toAligned Programme Outcomes (POS)CO1Recognize and construct different circuits representing lightning and travelling waves22CO2Analyze various switching transients in power systems.22CO3Appraise voltage surges in different electrical machines23	Course Type	Elective	No of Credits		3	
Prerequisites Advanced Power System Analysis CO-PO Matrix Course Outcomes (COs) Upon completion of the course, the students will be able to Aligned Programme Outcomes (POs) CO1 Recognize and construct different circuits representing lightning and travelling waves 2 2 CO2 Analyze various switching transients in power systems. 2 2 CO3 Appraise voltage surges in different electrical machines 2 3	Course Learning Objective (CLO)	To make the students familiar w voltages such as lighting stroke introduce some of the prote described. Also to depict the nece and currents.	ith the theoretical basis f s, surges, switching t action measures against assity and methods for gen	or various ransients such ove nerating in	s forms o etc., a er voltage npulse vo	of over nd to es are ltages
CO-PO Matrix Course Outcomes (COs) Upon completion of the course, the students will be able to Aligned Programme Outcomes (POs) CO1 Recognize and construct different circuits representing lightning and travelling waves 2 2 CO2 Analyze various switching transients in power systems. 2 2 CO3 Appraise voltage surges in different electrical machines 2 3	Prerequisites	Advanced Power System Analysis				
CO-PO Matrix Course Outcomes (COs) Upon completion of the course, the students will be able to Aligned Programme Outcomes (POs) CO1 Recognize and construct different circuits representing lightning and travelling waves 2 2 CO2 Analyze various switching transients in power systems. 2 2 CO3 Appraise voltage surges in different electrical machines 2 3						
Course Outcomes (COs) Upon completion of the course, the students will be able to Aligned Programme Outcomes (POs) CO1 Recognize and construct different circuits representing lightning and travelling waves 2 2 CO2 Analyze various switching transients in power systems. 2 2 CO3 Appraise voltage surges in different electrical machines 2 3		СО-РС) Matrix			
(COs)IOPO1PO2PCO1Recognize and construct different circuits representing lightning and travelling waves22CO2Analyze various switching transients in power systems.22CO3Appraise voltage surges in different electrical machines23	Course Outcomes	Upon completion of the course, the students will be able Outcom		completion of the course, the students will be able Outcomes (POs)		nme
CO1Recognize and construct different circuits representing lightning and travelling waves22CO2Analyze various switching transients in power systems.22CO3Appraise voltage surges in different electrical machines23		to		Outc	omes (PC)s)
CO2 Analyze various switching transients in power systems. 2 2 CO3 Appraise voltage surges in different electrical machines. 2 3	(COs)	to		PO1	omes (PC PO2	PO3
CO3 Appraise voltage surges in different electrical machines 2 3	(COs) CO1	to Recognize and construct different circ and travelling waves	cuits representing lightning	PO1	omes (PC PO2 2	PO3 3
	(COs) CO1 CO2	to Recognize and construct different cirr and travelling waves Analyze various switching transients	cuits representing lightning	2 2	omes (PC PO2 2 2	PO3 3 3
CO4 Understand basic protection of machines, stations and lines. 2 3	(COs) CO1 CO2 CO3	to Recognize and construct different cirr and travelling waves Analyze various switching transients Appraise voltage surges in different e	cuits representing lightning in power systems. electrical machines.	Outc PO1 2 2 2 2	omes (PC PO2 2 2 3	PO3 3 3 3
CO5Appreciate methods of generating and measuring A.C. and D.C., impulse voltages.23	(COs) CO1 CO2 CO3 CO4	to Recognize and construct different cirr and travelling waves Analyze various switching transients Appraise voltage surges in different e Understand basic protection of mach	cuits representing lightning in power systems. electrical machines. ines, stations and lines.	Outc PO1 2 2 2 2 2 2 2	omes (PC PO2 2 2 3 3	PO3 3 3 3 3 3

Transients in electric power systems – Internal and external causes of over voltages – Lightning strokes – Mathematical model to represent lightning, Travelling waves in transmission lines – Circuits with distributed constants – Wave equations – Reflection and refraction of travelling waves – Travelling waves at different line terminations.

Switching transients – double frequency transients – abnormal switching transients – Transients in switching a three-phase reactor - three phase capacitor

Voltage distribution in transformer winding – voltage surges-transformers – generators and motors Transient parameter values for transformers, reactors, generators and transmission lines

Basic ideas about protection – surge diverters-surge absorbers - protection of lines and stations Modern lighting arrestors - Insulation coordination - Protection of alternators and industrial drive systems

Generation of high AC and DC-impulse voltages, currents - measurement using sphere gapspeak voltmeters - potential dividers and CRO

- 1. Allen Greenwood, 'Electrical transients in power systems', Wiley Interscience, 1991.
- 2. Bewley, L.V., 'Travelling waves on Transmission systems', Dover publications, New York, 1963.
- 3. Gallaghar, P.J. and Pearman, A.J., 'High voltage measurement, Testing and Design', John Wiley and sons, New York, 2001.

Course Co & Name	ode e	EE673 Renewable Power Generation Technologies				
Course Ty	уре	Elective	No of Credits		3	
Course	•	This course makes the student				
Learning	g	 to aware of various forms of renewable energy 				
Objectiv	/e	to understand in detail the wind energy conversion system and photovoltaic				
(CLO)		conversion system				
Prerequisi	ites	Basic Electronics and Machines, Powe	er Electronics			
		CO DO	Matein			
Course	;			Aliane	d Progran	nme
Outcome	es	Upon completion of the course, the	e students will be able	Outc	omes (PC)s)
(COs)		10		PO1	PO2	PO3
CO1		Appraise the need and possibility of ex converting into electrical energy using	tracting solar energy and PV cell.	2	2	3
CO2		Design and analyze stand-alone ar system.	nd grid connected PV	3	3	3
CO3		Describe the dynamics of wind turbine a	and electrical generator.	3	2	2
CO4		Select and design suitable configurat conversion system based on application	ion of the wind energy on.	3	3	3
CO5	CO5Design and analyze hybrid energy systems.223					
 Sun and Earth-Basic Characteristics of solar radiation-angle of sunrays on solar collector-Photovoltaic cell-characteristics-equivalent circuit-Photovoltaic modules and arrays PV Systems - Design of PV systems-Standalone system with DC and AC loads with and without battery storage-Grid connected PV systems-Maximum Power Point Tracking Wind energy – energy in the wind – aerodynamics - rotor types – forces developed by blades - Aerodynamic models – braking systems – tower - control and monitoring system - design considerations power curve - power speed characteristics-choice of electrical generators Wind turbine generator systems - fixed speed induction generator-performance analysis-semi variable speed induction generator-variable speed induction generator - permanent magnet alternator performance analysis Hybrid energy systems - wind-diesel system-wind - PV system-micro hydro-PV system – 						
Referenc	e Bo	oks:				
1. Chetan Pvt. Lto	n Sing d., Ne	n Solanki, 'Solar Photovoltaics -Fundam w Delhi, 2011	entals, Technologies and A	Application	s', PHI Lea	arning
2. Van O Bristol,	verstr 1996.	aeton and Mertens R.P., 'Physics, T	echnology and use of Ph	notovoltaic	s', Adam H	lilger,
3. John F	.Walk	er & Jenkins. N , 'Wind energy Technolo	ogy', John Wiley and sons,	Chicheste	r, UK, 199	7.
4. Freries	: LL ,'\	Vind Energy Conversion Systems', Prer	ntice Hall, U.K., 1990 .			

Course Code & Name	EE674 Power System Planning and Reliability					
Course Type	Elective	No of Credits		3		
Course Learning Objective (CLO)	To acquire skills in planning and building reliable power system					
Prerequisites	Power system analysis, Power system Calculus	m transmission and distribution	on, Matrice	s, Probabi	lity and	
Courses	CO-PO	O Matrix	Aliana	d Program	nme	
Outcomes	Upon completion of the course, t	the students will be able	Aligne	omes (PC	nme)s)	
(COs)	to		PO1	PO2	PO3	
CO1	Explain the characteristics of loads, or and its types for power system plann	concepts of load forecasting ing.	3	3	3	
CO2	Comprehend the significance of rel various methods and tools used for r	3	3	3		
CO3	Describe the concepts of reliab transmission system, and system into	Describe the concepts of reliability in generation and transmission system, and system interconnection.				
CO4	Discriminate the different modes of explain various approaches to asses	of system failure and to spower system failure	3	3	3	
Course Cont Objectives loads – me forecasting	e nt: of planning – Long and short terr ethodology of forecasting – energ – annual and monthly peak dema	n planning - Load foreca y forecasting – peak dei nd forecasting.	sting – ch mand fore	aracteris casting -	tics of - total	
Reliability concepts – exponential distributions – meantime to failure – series and parallel system – MARKOV process – recursive technique. Generator system reliability analysis – probability models for generators unit and loads – reliability analysis of isolated and interconnected system – generator system cost analysis – corporate model – energy transfer and off peak loading						
Transmission frequency a	Transmission system reliability model analysis – average interruption rate - LOLP method -					

Two plant single load system - two plant two load system - load forecasting uncertainly interconnections benefits

Introduction to system modes of failure – the loss of load approach – frequency & duration approach – spare value assessment – multiple bridge equivalents

- 1. Sullivan, R.L., 'Power System Planning', Heber Hill, 1987.
- 2. Roy Billington, 'Power System Reliability Evaluation', Gordan& Breach Scain Publishers, 1990.
- 3. Eodrenyi, J., 'Reliability modelling in Electric Power System' John Wiley, 1980.

Co	ourse Code & Name	EE675 Modeling and Analysis of Electrical Machines				
Co	ourse Type	Elective No of Credits 3				
	Course Learning Dbjective (CLO)	To give a systematic approach fo under both transient and steady s	or modeling and analysis state conditions.	of all rota	ting macl	hines
Pre	erequisites	Electromagnetic Field Theory, Vector Machines	or Algebra and Fundamenta	als of all E	lectrical R	Rotating
		00.00	Matula			
	Course	CO-PC) Matrix	Aliane	d Program	nme
c	Upon completion of the course, the students will be able		Outc	omes (PC	Ds)	
_	(COs)	to		PO1	PO2	PO3
	CO1	Analyze the operation of rotating made	chines.	2	1	2
	CO2	Construct machine models based frames.	on different reference	3	2	3
	CO3	Analyze and synthesize equivalen synchronous and asynchronous mac	t circuit parameters for hines.	3	3	3
	CO4	Understand and analyze special mac	hines.	3	3	3
 Principles of Electromagnetic Energy Conversion, General expression of stored magnetic energy, co-energy and force/torque, example using single and doubly excited system. Basic Concepts of Rotating Machines-Calculation of air gap mmf and per phase machine inductance using physical machine data; Voltage and torque equation of dc machine. Three phase symmetrical induction machine and salient pole synchronous machines in phase variable form; Application of reference frame theory to three phase symmetrical induction and synchronous machines, dynamic direct and quadrature axis model in arbitrarily rotating reference frames. Determination of Synchronous Machine Dynamic Equivalent Circuit Parameters, Analysis and dynamic modeling of two-phase asymmetrical induction machine and single phase induction machine. Special Machines - Permanent magnet synchronous machine: Surface permanent magnet (square and sinusoidal back emf type) and interior permanent magnet machines. Construction and operating principle, dynamic modeling and self-controlled operation; Analysis of Switch Reluctance Motors 						
Re 1. 2. 3.	 Reference Books: Charles Kingsley, Jr., A.E. Fitzgerald, Stephen D.Umans, 'Electric Machinery', Tata McgrawHill, 5th Edition, 1992. R. Krishnan, 'Electric Motor & Drives: Modeling, Analysis and Control', Prentice Hall ofIndia, 2nd Edition, 2001. Miller, T.J.E., 'Brushless Permanent Magnet and Reluctance Motor Drives', Clarendon Press, 1st Edition, 1989 					

Course Code & Name	EE676 Power Quality				
Course Type	Elective	No of Credits		3	
Course Learning Objective (CLO)	 Understand the various power quality phenomenon, their origin, impact and monitoring methods. Equip the necessary skills to handle power quality problems. 				t and
Prerequisites	Power Systems, Signals and Systems.				
	СО-РО	O Matrix			
Course Outcomes	Upon completion of the course, the students will be able		Aligned Programme Outcomes (POs)		nme Ds)
(COs)	10		P01	PO2	PO3
CO1	Understand different types of power source of generation.	quality problems with their	2	3	2
CO2	Interpret and analyse the results of equipment.	power quality monitoring	3	3	2
CO3	Develop different methodologies classification of power quality proble	s for detection and ms.	3	3	3
CO4	Interpret and analyse the results of equipment	power quality monitoring	3	3	3
0					•

Electric power quality phenomena: Introduction to power quality, IEEE and IEC - EMC standards, overview, sources and impact of power quality disturbances – RMS voltage variations, interruptions, voltage fluctuation, transients, waveform distortion and power frequency variations.

Harmonics: Harmonic sources, measurement of harmonic distortion, current and voltage limits of distortion, harmonic analysis using Fourier transform, effects of harmonic distortion and harmonic filters

Power definitions: Instantaneous power and other power definitions for single-phase system under sinusoidal and non-sinusoidal conditions, three-phase balanced and unbalanced systems under sinusoidal and non-sinusoidal conditions

Power Quality Monitoring: importance and introduction to power quality monitoring, overview of power quality disturbance classification, signal processing of disturbances, power quality indices estimation, case studies.

Custom Power Devices: Introduction to shunt and series compensators, DSTATCOM, Dynamic Voltage Restorer (DVR) and Unified Power Quality Conditioner (UPQC) – case studies.

- 1. Dugan R. C., Mc Granaghan M. F. Surya Santoso, and Beaty H. W., 'Electrical Power System Quality', McGraw-Hill 2003.
- 2. Bollen, M. H. J., 'Understanding Power Quality Problems; Voltage sags and interruptions', IEEE Press, New York, 2000.
- 3. Mishra, Mahesh Kumar, 'Power Quality in Power Distribution Systems Concepts and Applications', CRC Press, Taylor & Francis, New York, 2024.
- 4. Ghosh, Arindam, and Gerard Ledwich, 'Power quality enhancement using custom power devices' Springer Science & Business Media, 2012.
- 5. Arrillaga, J., Watson, N. R., Chen, S., 'Power System Quality Assessment', Wiley, New York, 2011.

Cou	rse Code	EE677 Power Sy	stem Restructuring a	nd Pricir	g	
Cou	rse Type	Flective	No of Credits		3	
C Le Ob	course earning ojective CLO)	To understand the electricity power business and technical issues in a restructured power system in both Indian and world scenario.				
Prer	equisites	Power system Analysis, Power syste	em Transmission and distribu	ition.		
		CO-P	O Matrix			
C Ou	ourse tcomes	Upon completion of the course,	the students will be able	Aligne Outc	d Prograr omes (PC	nme Ds)
((COs)			PO1	PO2	PO3
	CO1	Explain the deregulated electricity around the world.	market models functioning	3	2	3
	CO2	Understand the operational and pla generation	anning activities in power	3	2	3
	CO3	Analyse various transmission pricing	schemes	3	3	3
	CO4	Study the development of competitic companies.	n in electricity distribution	3	3	3
	CO5	Outline the salient features of In operation of Indian power exchanges	dian Electricity Act and s.	3	2	3
Intr Ma Op Un Re Intr Op sys Wr Op Co Po ex Co	 Introduction – Market Models – Entities – Key issues in regulated and deregulated power markets; Market equilibrium- Market clearing price- Electricity markets around the world. Operational and planning activities of a Genco - Electricity Pricing and Forecasting -Price Based Unit Commitment Design - Security Constrained Unit Commitment design Ancillary Services for Restructuring- Automatic Generation Control (AGC). Introduction-Components of restructured system-Transmission pricing in Open-access system- Open transmission system operation; Congestion management in Open-access transmission systems- FACTS in congestion management - Open-access Coordination Strategies; Power Wheeling-Transmission Cost Allocation Methods Open Access Distribution - Changes in Distribution Operations- The Development of Competition – Maintaining Distribution Planning Power Market Development – Electricity Act, 2003 - Key issues and solution; Developing power exchanges suited to the Indian market - Challenges and synergies in the use of IT in power- Competition- Indian power market- Indian energy exchange- Indian power exchange- 					
Refe	erence Bo	ooks:				
1. L	oi Lei Lai, '	Power System Restructuring and Dere	egulation', John Wiley & Son	s Ltd., 2001	l.	_
2. N It	/lohammad d., 2002.	Shahidehpour, Hatim Yamin, 'Market	operations in Electric power s	systems', Jo	ohn Wiley	& son
3. L	orrin Philip.	son, H. Lee Willis, 'Understanding Ele	ctric Utilities and Deregulatio	n' Taylor &	Francis, 2	2006.
4. S	Steven Stoff	t , 'Power System Economics: Designi	ng Markets for Electricity', W	iley-IEEE F	ress,2002	2.
5. C	aniel S.Kir	schen, Goran Strbac,'Fundamentals o	f power System Economics,\	Niley,2018		
6. N Ir	/lohammad nc., 2001.	Shahidehpour, Muwaffaq Alomoush, 'I	Restructured Electrical Powe	r Systems',	Marcel D	ekker,

Course Code & Name	EE678 Computer Relaying and Wide Area Measurement Systems				
Course Type	Elective	No of Credits		3	
Course Learning Objective (CLO)	The goal of this course is to provide basic knowledge on computer relaying and its applications in wide area measurement systems. The internal architecture and algorithms employed in a numerical relays will be discussed. Understanding about wide area measurement systems, mathematical background for relaying algorithms and also examining line relaying algorithms for protection of power system components				
Prerequisites	Digital Signal Processing, Power System Protection				
	CO-PO	O Matrix			
Course Outcomes	Upon completion of the course, t	the students will be able	Aligne Outc	d Prograr omes (PC	nme)s)
(COs)	10		P01	PO2	PO3
CO1	Demonstrate knowledge of fundament principles and practice of computer r	ntal aspects of the theories, elaying	3	3	3
CO2	Understand the application of numeri equipment protection	cal relay to power system	3	3	3
CO3	Understand and design wide area application in Smart grid	Understand and design wide area measurement systems 3 3 3 3			

Introduction to DSP, Use of computer relay, Analog to Digital Converters, Sampling, Anti – aliasing filters. Evolution of power system relaying from electromagnetic to static to computer relaying; Relay operating principles for computer relaying; Expected benefits of computer relaying, Computer relay architecture.

Three zone protection of transmission line, algorithms for impedance calculations- Mann-Morrison algorithm - Three sample technique - Two sample technique - First and second derivative algorithms - Numerical integration methods.

Problems associated with differential protection of transformer and bus-bar, magnetic inrush current, LSQ algorithm, Fourier analysis of transformer protection.

Introduction to Phasor measurement units (PMUS), global positioning system (GPS), Functional requirements of PMUs and PDCs, phasor estimation of nominal frequency inputs

Wide Area Measurement Systems (WAMS), WAMS Applications in Smart Grid, WAMS Based Protection Concepts, Adaptive Relaying, State estimation.

- John G. Prokis and Dimitris G. Hanolakis, 'Digital Signal Processing, Principles, Algorithms & Applications' 4th Edition, Pearson Education, 2006.
- 2. A.G. Phadke, J.S. Thorp, 'Computer Relaying for Power Systems', John Wiley and Sons Ltd., Research Studies Press Limited, 2nd Edition, 2009.
- 3. A.G. Phadke, J.S. Thorp, 'Synchronized Phasor Measurements and Their Applications', Springer Publications, 2008.

Course Code & Name	EE680 Smart Grid Technologies				
Course Type	Elective	No of Credits		3	
Course Learning Objective (CLO)	 to understand the need and concept of Smart Grid. to study different EMS and DMS functions and smart meters. to get familiarized with the communication networks for Smart Grid applications 				
Prerequisites	Fundamentals of Power Distribution	Systems .			
	CO-PC	O Matrix			
Course Outcomes	Upon completion of the course, the students will be able		Aligned Programme Outcomes (POs)		nme Ds)
(COs)	10		P01	PO2	PO3
CO1	Understand the EMS and DMS funct energy resources.	tionalities, AMI, and smart	2	3	3
CO2	Analyze the operation of modern p with prosumers and EV owners.	ower distribution system	3	3	3
CO3	Evaluate suitable information and cor for smart grid applications.	nmunication technologies	2	3	3
Course Content: Introduction - Evolution of Electric Grid, Smart Grid Concept - Definitions and Need for Smart Grid					

Introduction - Evolution of Electric Grid, Smart Grid Concept - Definitions and Need for Smart Grid – Functions – Opportunities – Benefits and challenges, Difference between conventional & Smart Grid, Technology Drivers.

Energy Management System (EMS) - Substation Automation - Feeder Automation – Protocols, Wide area monitoring protection and control - Smart integration of renewable energy resources — Energy Storage, Distribution Management System (DMS) – Network Reconfiguration, Outage management System, Customer Information System - Application of Geographical Information System.

Introduction to Smart Meters – Advanced Metering infrastructure (AMI), AMI protocols – Standards and initiatives, Demand side management and demand response programs, Demand pricing and Time of Use, Real Time Pricing, Peak Time Pricing.

P2G paradigm – feed-in-tariff-net metering, P2P energy trading – community energy management – market operations – pricing mechanism, Plug in Hybrid Electric Vehicles – G2V – V2G – effect of grid interaction of electric vehicles – energy management.

Elements of communication and networking – architectures, standards, PLC, Zigbee, GSM, BPL, Local Area Network (LAN) – HAN, NAN, FAN - Wide Area Network (WAN) – Protocols-STTP Protocol, Modbus Protocol, IEEE 2030.5. Basics of CLOUD Computing – Basics of Blockchain - Cyber Security for Smart Grid.

- 1. Stuart Borlase 'Smart Grid: Infrastructure, Technology and Solutions', CRC Press 2012.
- 2. Janaka Ekanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, Akihiko Yokoyama, 'Smart Grid: Technology and Applications', Wiley, 2012.
- 3. Mini S. Thomas, John D McDonald, 'Power System SCADA and Smart Grids', CRC Press, 2015
- 4. Kenneth C. Budka, Jayant G. Deshpande, Marina Thottan, 'Communication Networks for Smart Grids', Springer, 2014.
- Wayes Tushar, Chau Yuen, Tapan K. Saha, Thomas Morstyn, Archie C. Chapman, M. Jan E. Alam, Sarmad Hanif, H. Vincent Poor, "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Volume 282, Part A, 2021. https://doi.org/10.1016/j.apenergy.2020.116131

Course Code & Name	EE681 Electrical Systems in Wind	Energy			
Course Type	Elective No of Credits		3		
Course Learning Objective (CLO)	To introduce the various electrical generators and appr controllers employed in wind energy systems. To teach the analysis and operation of different existing configurations wind energy and also the recent developments taking place	opriate po students ti s of electri e in this fie	ower elec he steady ical syste eld.	ctronic /-state ems in	
Prerequisites	Electrical Machines and Power Electronics.				
	CO-PO Matrix				
Course Outcomes	Upon completion of the course, the students will be able	Aligne Outc	d Progran omes (PC	nme Os)	
(COs)		P01	PO2	PO3	
CO1	Understand the operation of electrical generators used in wind energy systems	2	2	2	
CO2	Analyse the steady-state performance of the wind energy conversion systems	2	2	2	
CO3	Design closed-loop controllers for specific applications	3	3	3	
 Principle of operation – steady-state analysis-characteristics of GCIGs- operation of GCIGs with different power electronic configurations. Process of self-excitation – steady-state equivalent circuit of SEIG and its analysis - performance equations - widening the operating speed-range of SEIGs by changing the stator winding connection with suitable solid state switching schemes - power electronic controllers used in standalone systems. Need for single-phase operation –typical configurations for the single-phase operation of three-phase GCIGs and SEIGs –stead state equivalent circuit and analysis using symmetrical components. Different operating modes- steady-state equivalent circuit- performance analysis- DFIG for standalone applications- operation of DFIGs with different power electronic configurations for standalone and grid connected operation Operation of PMSGs- steady-state analysis- performance characteristics- operation of PMSGs 					
 Reference Boo Induction Goo Induction Goo Ion Boldea, S.N. Bhadra Siegfried H Edition', Wile 	ooks: doy Simões and Felix A. Farret, 'Renewable Energy Systems: enerators', CRC Press, ISBN 0849320313, 2004. 'Variable speed Generators', CRC Press, ISBN 0849357152, 2006 , D.Kastha and S.Banerje, 'Wind Electrical Systems', Oxford Unive eier, Rachel Waddington, 'Grid Integration of Wind Energy ey, June 2006, ISBN: 978-0-470-86899-7.	Design and 5. ersity Press Conversion	d Analysis , 2005. n Systems	s with s, 2nd	
5. Freries LL ,	Wind Energy Conversion Systems', Prentice Hall, U.K., 1990.				

Course Code & Name	EE684 Distributed Generation and Micro-Grids					
Course Type	Elective	No of Credits		3		
Course Learning Objective (CLO)	 To understand the planning and operational issues related to Distributed Generation To understand various configurations of Microgrids 					
Prerequisites	The students are preferred to hav Distribution Systems	The students are preferred to have a basic knowledge in Power System Analysis and Distribution Systems				
	CO-PO	O Matrix				
Course	Lipon completion of the course t	he students will be able	Aligne	d Prograr	nme	
Outcomes	to		Outc	omes (PC)s)	
(COs)	10		PO1	PO2	PO3	
CO1	Understand the current scenar implementation of DGs.	io and need for the	3	2	3	
CO2	Investigate the types of interfaces an grid integration of DGs	d control schemes for the	3	3	3	
CO3	Evaluate the technical and economic	impacts of DGs	3	3	3	
CO4	Understand different configuration modeling.	s of microgrid and its	3	3	2	

Need for Distributed generation, renewable sources in distributed generation, current scenario in Distributed Generation, Planning of DGs – Siting and sizing of DGs – optimal placement of DG sources in distribution systems.

Grid integration of DGs – Different types of interfaces - Inverter based DGs and rotating machine based interfaces - Aggregation of multiple DG units. Energy storage elements: Batteries, ultra-capacitors, flywheels Technical impacts of DGs – Transmission systems, Distribution systems, De-regulation – Impact of DGs upon protective relaying – Impact of DGs upon transient and dynamic stability of existing distribution systems

Introduction to micro-grids – Types of micro-grids – autonomous and non-autonomous grids – Sizing of micro-grids- modeling & analysis- Micro-grids with multiple DGs – Micro- grids with power electronic interfacing units. Transients in micro-grids - Protection of micro-grids – Case studies

Economic and control aspects of DGs –Market facts, issues and challenges - Limitations of DGs. Voltage control techniques, Reactive power control, Harmonics, Power quality issues. Reliability of DG based systems – Steady-state and Dynamic analysis.

- 1. H. Lee Willis, Walter G. Scott ,'Distributed Power Generation Planning and Evaluation', Marcel Decker Press, 2000.
- M.GodoySimoes, Felix A.Farret, 'Renewable Energy Systems Design and Analysis with Induction Generators', CRC press.
- 3. Robert Lasseter, Paolo Piagi, ' Micro-grid: A Conceptual Solution', PESC 2004, June 2004.
- 4. F. Katiraei, M.R. Iravani, 'Transients of a Micro-Grid System with Multiple Distributed Energy Resources', International Conference on Power Systems Transients (IPST'05) in Montreal, Canada on June 19-23, 2005.
- 5. Z. Ye, R. Walling, N. Miller, P. Du, K. Nelson 'Facility Microgrids', Subcontract report, May 2005, General Electric Global Research Center, Niskayuna, New York.

Course Code & Name	EE685 Control Design Techniques for Power Electronic Systems					
Course Type	Elective No of Credits		3			
Course Learning Objective (CLO)	The main objective of this course is to study the application to power electronic converters and drives	n of moder	n control	theory		
Prerequisites	Classical Control, Systems Theory, Power Converters					
Course	CO-PO Matrix	Aliane	d Program	nme		
Outcomes	Upon completion of the course, the students will be able	Outc	omes (PC	Ds)		
(COs)	to	PO1	PO2	PO3		
CO1	Recognize different control techniques and design of compensators, controllers and observers	2	1	2		
CO2	Model and analyze various closed loop controllers	1	2	3		
CO3	Design controllers for different rectifiers and to analyze various modes of operation	2	1	3		
CO4	Model and design of various controllers for BLDC and Reluctance motors.	2	3	3		
Review of compensat and observ Control of I Converters controllers Control of r feedback of Analysis of Modelling of speed cont control of s Modelling of regulation of	Reluctance motors. Course Content: Review of basic control theory – control design techniques such as P, PI,PID and lead lag compensator design. Review of state space control design approach – state feedback controller and observer design. Control of DC-DC converters. State space modeling of Buck, Buck-Boost, Cuk, Sepic, Zeta Converters. Equilibrium analysis and closed loop voltage regulations using state feedback controllers and sliding mode controllers Control of rectifiers. State space modeling of single phase and three phase rectifiers. State feedback controllers and observer design for output voltage regulation for nonlinear loads. Analysis of continuous and discontinuous mode of operation. Modelling of Brushless DC motors and its speed regulations – State space model, sensor less speed control of BLDC motor and Sliding mode control design for BLDC motor. Modelling and control of switched reluctance motor Modeling of multi input DC-DC converters and its application to renewable energy. Output voltage regulation of Multi input DC-DC converter using state feedback controllers.					
Reference Bo 1. Sira -Ramir	рокs: ez, R. Silva Ortigoza, 'Control Design Techniques in Power Ele	ctronics De	vices', Spr	inger,		
2006. 2. Siew-Chong Press, 2011	 Siew-Chong Tan, Yuk-Ming Lai, Chi Kong Tse, 'Sliding mode control of switching Power Converters', CRC Press, 2011. 					
3. Bimal Bose,	'Power electronics and motor drives', Elsevier, 2006.					
4. Ion Boldea a	and S.A Nasar, 'Electric drives', CRC Press, 2005.					

Course Co	de FF687 FI	ectric and Hybrid Vehi	cles			
& Name Course Ty	Open Elective	No of Credits		3		
Course Learning Objective (CLO)	This course introduces the fund of hybrid and electric vehicles.	amental concepts, principl	es, analys	sis and de	əsign	
Prerequisit	es Power Conversion Techniques, Ele	ctrical Machines				
		20 Matrix				
Course Outcome	Upon completion of the course,	the students will be able	Aligne Outc	d Prograr omes (PC	nme Ds)	
(COs)		dele sessiones estat	PO1	PO2	PO3	
CO1	characteristics of hybrid and electric	dels, performance and c vehicles.	2	2	2	
CO2	Analyze the concepts, topologies a electric traction systems	and power flow control of	2	2	3	
CO3	Appraise the configuration and contr motor drives.	rol of various hybrid electric	2	2	3	
CO4	Plan and design appropriate vehicle	e management system.	3	3	3	
vehicles vehicle describe Basic co control i introduc topolog Introduc of DC I control o drives, o Matchin propuls Commu Introduc of diffe	 History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Basics of vehicle performance, vehicle power source characterization, transmission characteristics, mathematical models to describe vehicle performance. Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. Basic concepts of electric traction, introduction to various electric drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. Basic concepts of electric traction, introduction to various electric drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. Introduction to electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Introduction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency. Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems. Introduction to energy management strategies used in hybrid and electric vehicle, classification of different energy management strategies, comparison of different energy management 					
Reference 1. Bimal B 2. Ion Bold 3. C.C. Ch 4. Ali Ema 5. Mehrdae Vehicles	Books: ose, 'Power electronics and motor drives' ea and S.A Nasar, 'Electric drives', CRC an and K.T. Chau, "Modern electric Vehic li, "Advanced Electric Drive Vehicles", CF I Ehsani, Yimin Gao, Sebastien E.Gay, A fundamentals, theory and design", CRC	, Elsevier, 2006. Press, 2005. cle Technology", Oxford Unive RC Press, Taylor and Francis li Emadi, "Modern Electric, Hy Press, Taylor and Francis, 20	ersity Press ,2014. /brid Electri 010.	,2001. c, and Fue	el Cell	

Course Code & Name	EE688 Principles of VLSI Design				
Course Type	Elective	No of Credits		3	
Course Learning Objective (CLO)	Enables the student to get exposi application	ure on low power electron	ic system	design ar	nd its
Prerequisites	Digital Electronics, Electronic Circuits				
	CO-PO	O Matrix			
Course Outcomes	Upon completion of the course, t	the students will be able	Aligne Outc	d Prograr omes (PC	nme)s)
(COs)	10		PO1	PO2	PO3
CO1	Understand the concepts and charac	cteristics of MOS devices.	3	3	3
CO2	Model the system using Hardware D	escription languages.	3	3	3
CO3	Design the CMOS logic circuits and	memory units.	3	3	2
CO4	Acquire knowledge on PLDS.		3	3	2
CO5	Appraise the possibilities of ASIC de	sign.	3	3	3

MOS and Fabrication: VLSI technology- NMOS, CMOS and BICMOS circuit fabrication. Comparison of IC technologies. Operation characteristics, design equations, models and second order effects of MOS transistors, Fabrication of resistors and capacitors. Latch up, Driver circuits.

Hardware Description languages: VHDL- Modeling styles –Design of simple/ complex circuits using VHDL. Overview of Verilog HDL -Design of simple circuits using Verilog HDL.

CMOS Logic Circuits: Implementation of logic circuits using MOS and CMOS, Pass transistor and transmission gates ,design of combinational and sequential circuits – memory design.

Programmable Devices: Simple and Complex Programmable logic devices (SPLD and CPLDs), Field Programmable Gate Arrays (FPGAs), Internal components of FPGA, Case study: A CPLD and a 10 million gates type of FPGA.

ASIC: Types of ASICs-Design flow-Programmable ASICs-Programmable ASIC logic cells and interconnect for Xilinx and Altera families.

- 1. Neil Weste, David Harris, 'CMOS VLSI Design: A Circuits and Systems Perspective', Addison-Wesley, 4th Edition,2010
- 2. M. J. Smith, 'Application Specific Integrated Circuits', Addison Wesley, 1997.
- 3. Uyemura, 'Introduction to VLSI Circuits and Systems', Wiley, 2002.
- 4. J. Bhaskar, 'A Verilog HDL Primer', Star Galaxy, 2nd Edition, 2000.

Course Code & Name	EE689 Advanced Topics in Power Electronics					
Course Type	Elective	No of Credits		3		
Course Learning Objective (CLO)	To give an introduction to the recent developments of power electronics from components, topology, control techniques to thermal & EMC. This course drives on the application requirements of power electronics. This is a higher level of subject that will help to work in demanding areas of power electronics.					
Prerequisites	Prerequisites Power Electronics course in UG with knowledge on Basics of Semiconductor Switches, Basics of Converter Topology (AC-DC,AC-AC & DC-DC), Basic Control Techniques of Power Electronic Equipment, Basics of Reactive Elements, Storage and High Frequency Magnetic, Basics of EMC & any Power Simulation Environment.					
	CO-P(O Matrix				
Course Outcomes (COs)	Upon completion of the course, to	the students will be able	Aligne Outc	d Prograr omes (PC	nme Ds)	
CO1	Understand the principles of opera	tion of advanced Silicon	2	2	3	
CO2	Appraise various advanced conve suitable control schemes	erter topologies and the	3	3	3	
CO3	Recognize recent developments in c elements such as the material, the s on performance	lesign aspects of reactive tructure etc and the effect	2	2	3	
CO4	Understand nuances of advanced such as battery energy storage capacitors, etc and strategies for po systems	energy storage systems system (BESS), ultra- wer management in such	3	2	2	
CO5	Distinguish between various possib thermal management and EMI/EM solutions for simple power electronic	le solutions pertaining to IC problems and devise systems	3	3	3	
Solutions for simple power electronic systems Image: Solutions for simple power electronic systems Course Content: Introduction to switches - Advanced Silicon devices - Silicon HV thyristors, MCT, BRT & EST. SiC devices - diodes, thyristors, JFETs & IGBTs. Gallium nitrate devices - Diodes, MoSFETs. Advance converter topologies for PEE - Interleaved converters, Z-Source converters, Multi level converters (Cascaded H-Bridge, Diode clamped, NPC, Flying capacitor) Multi pulse PWM current source converters, Advanced drive control schemes. Advances in reactive elements - Advanced magnetic material, technology and design (Powder ferrite, Amorphous, Planar designs) Advance capacitive designs (Multilayer chip capacitors, double layers for storage, Aluminum electrolytic) Advance storage systems - Developments in battery systems, Ultra capacitors, Fly wheel energy storage, Hybrid storage systems for EV/HEV, Power management in hybrid systems, Energy storage in renewable. Thermal engineering with EMI/EMC techniques - Advanced thermal solutions (fan cooled, liquid cooled, heat pipes, hybrid techniques) EMC techniques (Conducted, Radiated emissions & Developments in techniques (Conducted, Radiated emissions & Developments (Techniques (Conducted, Radiated emissions						
Reference Bo 1. Andrzej M T 1998	ooks: rzynadlowski, 'Introduction to Modern I	Power Electronics, John Wile	ey and sons	. Inc, New	York,	

- R D Middle Brook& Slobodan CUK, 'Advances in Switched Mode Power Conversion', Vol I, II, & III, Tesla Co 1983
- B. Jayant Balinga, 'Advanced High Voltage Power Device Concepts', Springer New York 2011. ISBN 978 -1- 4614-0268-8
- 4. BIN Wu, ' High Power Converters and AC Drives', IEEE press Wiley Interscience, a John wiley& sons Inc publication 2006
- 5. Wurth Electronics, 'Trilogy of Magnetics, Design guide for EMI filter design in SMPS & RF circuits', 4th extended and revised edition.

Course Code & Name	EE690 D	esign Techniques for	SMPS			
Course Type	Elective	No of Credits		3		
Course Learning Objective (CLO)	To give a practical step by step a and apply the necessary recent requirements.	approach for design and technology to comply th	assembly e standar	of Powe ds and c	r Supplies ertification	
Prerequisites	Power Electronics course in UG with knowledge on Basics of semiconductors, Basics of Power Supplies-LPS & SMPS, Basic Topologies in SMPC, Control of Power Semiconductors, Basics of High Frequency Magnetic, Basics of EMC & any Power Simulation Environment.					
Course		-PO Matrix	Alio	unad Brag	rommo	
Outcomes	Upon completion of the course, the	he students will be able		utcomes ((POs)	
(COs)	to		PO1	PO2	PO3	
CO1	Choose various converter topol components	logies and appropriate	3	2	3	
CO2	Design measurement, monitoring a Switched Mode Power Supplies	and control circuitry for	3	3	3	
CO3	Evaluate thermal performance of S appropriate filters	SMPS units and design	3	3	3	
CO4	Explore the standards and recent a SMPS	advancements related to	3	3	3	
CO5	Analyze and simulate various convert	ter topologies	3	3	3	
Course Cont	ent:					

Introduction of Available Sources& demanding loads: Sources-AC mains, Lab supplies, Batteries, Solar Cells Loads - Requirements of load, battery as load, Selection of Topology :Step-Up/Step-Down, Multiple outputs, Continuous & discontinuous modes of operation, Isolated converters, Various configurations of Converters, Selection of Components: Selection of Resistors, Chokes, Capacitors, Diodes, MOSFETs & IGBTs, Connectors, Design of Magnetics Fundamentals & ideal conditions, design of High frequency chokes & transformers, Selection of wire gauge, sealing of magnetic.

Guide to Instrumentation: Basics of measurements using DMM, Oscilloscope, Electronic loads, etc Design of Magnetics Fundamentals & ideal conditions, design of High frequency chokes & transformers, Selection of wire gauge, sealing of magnetics Design of Feedback circuits Basic control requirements, Current &voltage mode control fundamentals& system stability conditions Design of Control and Monitoring circuits Practical Control circuitry & Monitoring circuitry requirements.

Evaluations and Thermal management Performance evaluations of SMPS & thermal loss calculations and cooling options& packaging of converter EMI control requirements Overview of EMC, differentiating signal and noise, Layout concepts Low & High frequency filtering requirements, Optimal filter design Worst case analysis Introduction to datasheet reading, operation tuned to datasheet, typical worst-case analysis

Standards governing the power supplies IEC standards for Electrical & Environmental testing, certification standards, Ingress protection standards Recent trend in Power supplies Recent advancements in components, Recent advancements in topologies, Digital control of power supplies, Power Integration &its Low power applications.

Analysis and Simulation using PSIM:BUCK, BOOST&BUCK, BOOST, Typical discrete power factor corrector circuit.

- Ned Mohan, Undeland and Robbins, 'Power Electronics Converters, Applications and Design', 2nd Edition, 1. JohnWiley&sons,1995.
- 2. Abraham I. Pressman, Keith Billings, Taylor Morey, 'SwitchingPowerSupplyDesign', 3rd Edition, McGraw-Hill 2009.
- 3. L. Umanand and SR Bhat, 'Design of Magnetic Components for Switched Mode Power Converters', Wiley Eastern Limited.
- 4. International Standard, IEC 60571 Edition 2.12006-12.

Course Code & Name	EE691 Energy Storage Systems						
Course Type	Elective	No of Credits		3			
Course Learning Objective (CLO)	To emphasize basic physics, chemistry, and engineering issues of energy storage devices, such as batteries, thermoelectric convertors, fuel cells, super capacitors.						
Prerequisites	Fundamental Chemistry and Materia	I Science					
	CO-PO	O Matrix					
Course Outcomes	Upon completion of the course, the students will be able		Aligne Outc	d Progran omes (PC	nme Ds)		
(COs)	10		P01	PO2	PO3		
CO1	Recognize various issues related to energy market, its growth and its structural implications in India.		2	2	3		
CO2	Analyze the performance of different battery storage systems.			3	3		
CO3	Employ different thermoelectric n appropriately.	neasurement techniques	2	1	3		
CO4	Interpret the applications of superc storage systems.	apacitors for appropriate	2	2	3		
CO5	Understand and differentiate differen	t types of fuel cells.	3	2	3		
Course Content: Prospect for both traditional and renewable energy sources - detailed analysis of Indian energy							
implications Batteries -	market and future need through 2020 - energy, economic growth and the environment, implications of the Kyoto Protocol, and structural change in the electricity supply industry.						
	Batteries - performance, charging and discharging, storage density, energy density, and safety						

Batteries - performance, charging and discharging, storage density, energy density, and safety issues, classical batteries - Lead Acid, Nickel-Cadmium, Zinc Manganese dioxide, and modern batteries -Zinc-Air, Nickel Hydride, Lithium Battery.

Thermoelectric - electron conductor and phonon glass, classical thermoelectric materials (i) fourprobe resistivity measurement, Seebeck coefficient measurement, and thermal conductivity measurement.

Super capacitors - types of electrodes and some electrolytes, Electrode materials - high surface area activated carbons, metal oxide, and conducting polymers, Electrolyte - aqueous or organic, disadvantages and advantages of super capacitors - compared to battery systems, applications - transport vehicles, private vehicles, and consumer electronics - energy density, power density, price, and market.

Fuel cells - direct energy conversion - maximum intrinsic efficiency of an electrochemical converter, physical interpretation - carnot efficiency factor in electrochemical energy convertors, types of fuel cells - hydrogen oxygen cells, hydrogen air cell, alkaline fuel cell, and phosphoric fuel cell.

Energy converters for Battery and Fuel cells.

- 1. Tetsuya Osaka, Madhav Datta, 'Energy Storage Systems in Electronics', Gordon and Breach Science Publishers, 2000.
- 2. R. M. Dell, D.A.J. Rand, 'Understanding Batteries', RSC Publications, 2001.
- 3. James Larminie, Andrew Dick, 'Fuel Cell System Explained', J. Wiley, 2003.
- 4. D.M. Rowe, 'Thermo-electrics Handbook: Macro to Nano', CRC Press, 2006.

Course Code & Name	EE 692 Digital Simu	lation of Power Electro	onic Sys	tems	
Course Type	Elective No of Credits 3				
Course Learning Objective (CLO)	To provide knowledge on modelin systems	ng and simulation of powe	er simulatio	on circuits	and
Prerequisites	Knowledge in Power Electronics and	machines			
	CO. D	O Materia			
Course	CO-P0	J Matrix	Aligno	d Drogram	
Outcomes	Upon completion of the course, t	he students will be able	Outc	omes (PC	nine)s)
(COs)	to		PO1	PO2	PO3
CO1	develop algorithm and software mod and drives applications	tels for power electronics	3	2	2
CO2	analyze the transient and steady s designed models.	state performance of the	3	2	2
CO3	choose suitable devices or models fo	r appropriate applications.	2	2	2
Review of Switched R Modeling of of SCR, TR R, L, C circ of snubber State spac modeling: in aspects.	numerical methods. Application of , L, RL, R-C and R-L-C circuits. Ex diode in simulation. Diode with R, IAC, IGBT and Power Transistors uits with power electronic switches circuits. e modeling and simulation of lim nduction, DC, and synchronous ma	of numerical methods to atension to AC circuits. R-L, R-C and R-L-C load in simulation. Application s. Simulation of gate/base mear systems. Introduction achines, simulation of bas	solve tran with ac su of numeri drive circo on to elec ic electric	nsients in apply. Mo- cal metho uits, simu trical ma drives, st	D.C. deling ods to ilation achine ability
 Simulation of single phase and three phase uncontrolled and controlled (SCR) rectifiers, converters with self commutated devices- simulation of power factor correction schemes, Simulation of converter fed dc motor drives ,Simulation of thyristor choppers with voltage, current and load commutation schemes, Simulation of chopper fed dc motor. Simulation of single and three phase inverters with thyristors and self-commutated devices, Space vector representation, pulse-width modulation methods for voltage control, waveform control. Simulation of inverter fed induction motor drives. 					
Reference Bo 1. Simulink Re 2. Robert Erics	poks: ference Manual , Math works, USA. son, 'Fundamentals of Power Electroni	cs', Chapman & Hall, 1997.			
3. Issa Batarse	. Issa Batarseh, 'Power Electronic Circuits', John Wiley, 2004Simulink Reference Manual , Math works,				

USA.

Course Code & Name	EE693 PWM (Converters and Applic	ations		
Course Type	Elective	No of Credits		3	
Course Learning Objective (CLO)	 To understand the concepts and basic operation of PWM converters, including basic circuit operation and design To understand the steady-state and dynamic analysis of PWM converters along with the applications like solid state drives and power quality 				
Prerequisites	Power Converters				
	СО-РО	O Matrix			
Course	I know completion of the course t	he students will be able	Aligne	d Prograr	nme
Outcomes	to	The students will be able	Outcomes (POs)		
(COs)	10		PO1	PO2	PO3
CO1	Understand the basic operations of for Power Converters.	various PWM techniques	2	3	3
CO2	Steady-State and transient modellin converters with various PWM technic	g and analysis of power ques.	3	3	3
CO3	Analysis and Design of Control converters along with the applicatio and power quality	Loops for PWM power ns like solid state drives	3	3	3

AC/DC and DC/AC power conversion, overview of applications of voltage source converters, pulse modulation techniques for bridge converters, Multilevel Inverter – diode clamped inverter – flying capacitor inverter.

Bus clamping PWM and advanced bus clamping PWM, space vector based PWM, advanced PWM techniques, practical devices in converter; calculation of switching and conduction losses.

Compensation for dead time and DC voltage regulation; dynamic model of a PWM converter, multilevel converters; constant V/F induction motor drives.

Estimation of current ripple and torque ripple in inverter fed drives; line – side converters with power factor compensation.

Active power filtering, reactive power compensation; harmonic current compensation.

- 1. Mohan, Undeland and Robbins, 'Power Electronics; Converters, Applications and Design', John Wiley and Sons, 1989.
- 2. Erickson R W, 'Fundamentals of Power Electronics', Chapman and Hall, 1997.
- 3. Vithyathil J, 'Power Electronics: Principles and Applications', McGraw Hill, 1995

Course Code & Name	EE695 Digital Control Systems				
Course Type	Elective	No of Credits		3	
Course Learning Objective (CLO)	This course gives an idea about designing digital controllers, which are feasible to implement in digital computers, using both classical and modern techniques.				
Prerequisites	Classical control, modern control				
	CO-PO	O Matrix			
Course Outcomes	Upon completion of the course, t	he students will be able	Aligne Outc	d Prograr omes (PC	nme Ds)
(COs)	10		P01	PO2	PO3
CO1	Understand the difference between and discrete time controllers	continuous time controller	2	2	3
CO2	Design of digital controllers		2	3	3
CO3	Implementation based on various ap	plications	2	3	3

Introduction to Discrete time systems - Analogies with continuous-time systems, mathematical models for LTI discrete-time systems, convolution representation and difference equations in advanced and delayed form, Z-transformation, analysis of first, second, and higher order systems, stability of discrete time systems, the Jury's criterion.

Modeling of Sampled Data Systems - Sampled Data System; Models of Continuous Time Systems; Naturally Occurring Discrete Time Systems; Discretization of Continuous Time Systems; Approaches to Controller Design and Testing.

Digital Signal Processing - Linear System-Basic Concepts, Basic Discrete Time Signals, Input– Output Convolution Models; Z-Transform-Motivation and Definition of Z-Transform, Z-Transform Theorems and Examples, Transfer Function, Inverse of Z-Transform; Frequency Domain Analysis-Basics, Fourier Series and Fourier Transforms, Sampling and Reconstruction, Filtering, Discrete Fourier Transform.

Transfer Function Approach to Controller Design - Structures and Specifications-Control Structures ,Proportional Control, Other Popular Controllers; Proportional, Integral, Derivative Controllers Discretization Techniques, Discretization of PID Controllers; Pole Placement Controllers-Pole Placement Controller with Performance Specifications, PID Tuning Through Pole Placement Control ,Special Cases of Pole Placement Control; Minimum Variance Control-Generalized Minimum Variance Controller; Model Predictive Control-Generalized Predictive Control; Linear Quadratic Gaussian Control.

State Space Approach to Controller Design - State Space Techniques in Controller Design-Pole Placement, Estimators, Regulator Design, Linear Quadratic Regulator, Kalman Filter.

- 1. Digital Control, "Kannan M. Moudgalya", John Wiley & Sons, Ltd, 2007
- 2. Ogata K., "Discrete-time Control Systems", 2nd Edition, Prentice Hall Inc., New Jersey, 1992.

Course Code & Name	EE696 Pc	ower System Automat	ion			
Course Type	Elective	No of Credits		3		
Course Learning Objective (CLO)	To familiarize the students with the basics of Power System Automation, Building blocks, Supervisory Control and Data Acquisition(SCADA) System, Remote Terminal Units(RTU), Master Stations etc.					
Prerequisites	Basic Knowledge of Transmission & Distribution systems and Measuring Instruments					
	СО-РО	O Matrix				
Course Outcomes	Upon completion of the course, t	the students will be able	Aligne Outc	d Prograr omes (PC	ogramme es (POs)	
(COs)	10		P01	PO2	PO3	
CO1	Understand the concepts of power s	ystem automation.	2	2	3	
CO2	Understand the components of SCA	DA systems.	2	2	3	
CO3	Comprehend the RTU, IED and automation systems	l other components of	3	2	3	
CO4	Understand the transfer of signals fro control terminal	om the field to an operator	3	2	3	
CO5	Design an interoperable powers auto	mation system.	3	2	3	

Evolution of Automation systems, History of Power system Automation, Supervisory Control and Data Acquisition(SCADA) Systems, Components of SCADA systems, SCADA Applications, SCADA in power systems, SCADA basic functions, SCADA application functions in Generation, Transmission and Distribution.

Advantages of SCADA in Power Systems, The Power system 'Field', Types of data & signals in the Power system, Flow of Data from the field to the SCADA Control Center. Building blocks of SCADA systems, Classification of SCADA systems.

Remote Terminal Unit (RTU), Evolution of RTUs, Components of RTU, Communication, Logic, Termination and Test/HMI Subsystems, Power supplies, Advanced RTU Functionalities.

Intelligent Electronic Devices (IEDs), Evolution of IEDs, IED functional block diagram, The hardware and software architecture of IED, IED Communication subsystem, IED advanced functionalities, Typical IEDs, Data Concentrators and Merging Units, SCADA Communication Systems.

Master Station, Master station software and hardware configurations, Server systems in the master station, Small, medium and large master station configurations, Global Positioning Systems, Master station performance, Human Machine Interface (HMI), HMI components, Software functionalities, Situational awareness, Case studies in SCADA

- 1. Mini S. Thomas, John D McDonald, Power Systems SCADA and Smart Grid, CRC Press, Taylor and Francis .
- 2. Electric Power Substation Engineering John D. Mc Donald CRC Press, Taylor and Francis
- 3. Control and Automation of Electrical Power Distribution systems, James Northcote- Green, R Wilson, CRC Press, Taylor and Francis.
- 4. Electric Power Distribution, Automation, Protection and Control, James Momoh, CRC press, Taylor and Francis.

Course Code & Name	EE698 Grid Converters for Renewable Energy Applications			
Course Type	Elective No of Credits		3	
Course Learning Objective (CLO)	To understand the modeling, controlling of the grid connand wind applications.	ected conv	verters fo	r PV
Prerequisites	-			
	CO-PO Matrix			
Course Outcomes	Upon completion of the course, the students will be able to	Aligne Outc	d Progran omes (PC	nme)s)
(COS)	Understand the grid requirements for PV and wind turbine	P01	P02	P03
CO1	system under normal and abnormal grid conditions	2	2	3
CO2	Design and analyse the converters structure for grid connected PV and wind systems	3	3	3
CO3	Investigate various control aspects and techniques for grid connected converters under normal and abnormal grid conditions	3	2	3
Course Cont	ent:			
 and control of grid-tied converters. International regulations, response to abnormal grid conditions (voltage deviations, frequency deviations), power quality issues on DC current injection, current harmonics, power factor. Grid requirements for wind turbine systems, grid code evolution, frequency and voltage deviation under normal operation, active and reactive power control in normal operation, behavior under grid disturbance. Grid synchronization with PV and wind turbine systems, voltage vector under normal and abnormal grid conditions, synchronous reference frame PLL under unbalanced and distorted grid conditions, operation of different PLL techniques. Overview of control techniques for grid connected converters under unbalanced grid voltage conditions, control of grid converters under grid faults, control structures for unbalanced current 				
limitation.				
1. Remus	s Teodorescu, Marco Liserre, Pedro Rodriguez., Grid Converters	for Photov	oltaic and	Wind
2. Amirna	Systems, first edition, Wiley Publication 2011. aser Yazdani, Reza Iravani., Voltage Sourced Converters in Power S	Systems, M	odeling, C	ontrol
3. Ned M	Iohan, Tore M, Undelnad, William P, Robbins (3 Edition), Powe ations and Design: Wiley 2002	er Electroni	cs: Conve	erters,
4. BinWu Wind e	, Yongqiang Lang, Navid Zargari and Samir Kouro., 'Power Convenergy systems', John wiley & sons, inc., publication 2011.	version	and Cont	trol of

Course Co	EE699 Topics in Power Electronics and Distributed					
& Name	Genera	Generation				
Course Ty	pe Elective No o	of Credits		3		
Course Learning Objective (CLO)	To understand the planning and opera	To understand the planning and operational issues related to distributed generation.				
Prerequisit	es -					
	CO-PO Matrix					
Course	Linen completion of the course, the studen		Aligne	d Program	nme	
Outcome	s boot completion of the course, the studen		Outc	omes (PC)s)	
(COs)			PO1	PO2	PO3	
CO1	Understand the current scenario of distributed the need to implement DG sources	generation and	1	2	2	
CO2	Investigate the different types of interfaces for g of DGs.	grid integration	2	3	2	
CO3	Appraise the technical impacts of DGs upon tran distribution systems.	nsmission and	2	3	3	
Course Content: Introduction to distribution systems, distribution system equipment, grounding, sequence analysis and fault calculations, relaying requirements for distributed generation (DG) systems. Intentional and unintentional islanding, power converter topologies for grid interconnection, inverter modelling, filtering requirements. Design of power converter components, DC bus design, considerations for power loss and reliability in the design procedure, thermal cycling of power semiconductor modules, insulation grade selection, and thermal design implications. Control of grid interactive power converter faults, grid parallel and stand alone operation. Power quality, voltage unbalance, harmonics, flicker, voltage and frequency windows, and recent trends in power electronic DG interconnection						
 Te Ra Art Ne Ap Se Un 6. Pro Tra 8. Pa 	chnical literature – papers published in power electror manarayanan V., Switched Mode Power Conversion, hur R, Bergen, Vittal, Power Systems Analysis (2nd E d Mohan, Tore M, Undelnad, William P, Robbins (plications and Design; Wiley 2002. dra A. S and Smith K, Microelectronic Circuits: th iversity Press, 2017. bakis J G and Manolakis D K, Digital Signal Processin cca Corradini, Dragan Maksimovic, Paolo Mattavelli equency Switched-Mode Power Converters, Wiley-Bla trick R, Schaumont, A Practical Introduction to Hardw	nics related journa 2007. Ed) Prentice Hall, (3 Edition), Powe neory and Applic ng, Pearson 2007 d, and Regan Zar ackwell, 2015.	als and IEE 1999 er Electroni ations, (7 ne, Digital	E standard cs: Conve Edition) C Control of	ds. erters,)xford [:] High	
	,	····, •P	0.	, 1 0		

Course Code & Name	EE701 Soft Switching Power Converters					
Course Type	Elective	No of Credits		3		
 Course Learning Objective (CLO) To evaluate various soft switching techniques, Design and control of soft switching converters (Soft switching PWM converters, resonant power converters) Applications of soft switched converters in renewable energy, electric vehicle and power supplies 						
Prerequisites	Prerequisites Power Converters, Basic Knowledge in Power Electronics					
	CC	-PO Matrix				
Course Outcomes	Upon completion of the course, t	he students will be able	Alig O	ned Prog utcomes (rogramme ies (POs)	
(COs)	10		PO1	PO2	PO3	
CO1	Understand various soft switchin Converters	g techniques for Power	3	2	3	
CO2	Select suitable soft switching semiconductor switches according to	scheme for different othe applications.	3	2	3	
CO3	Analysis and design of various soft real-world applications.	t switched converters for	3	3	3	
Course Cont	ent:					

Evaluation of switching loss in hard switched converters, Introduction to soft switching schemes, Comparison between hard switched and soft switching converters, Resonant switches, zero voltage switching (ZVS), zero current switching (ZCS), zero voltage zero-current switching (ZVSZCS), Parameters and selection of semiconductor switches for soft switching.

Concept of resonance, Classification of Quasi-Resonant Switches, Non isolated Zero-Current-Switching Quasi-Resonant Converters, Non isolated Zero-Voltage-Switching Quasi-Resonant Converters, Series-Loaded Resonant Converters, Parallel-Loaded Resonant Converters, Seriesparallel resonant converters, isolated high order resonant converters.

PWM Soft switched converter, Active clamp power converters with soft switching, design of active clamp ZVS fly back converter, high voltage gains ZVS converters, high voltage gains ZVS/ZCS converters.

Soft switched PWM Full bridge converters, Theoretical Basis of Soft Switching for PWM Full-Bridge Converters, Classification of Soft-Switching PWM Full-Bridge Converters, Zero-VoltageSwitching PWM Full-Bridge Converters, Modulation of the Lagging Leg, Modulation of the Leading Leg, Dual active bridge (DAB) converters and modulation strategy.

Application of resonant and PWM soft switched converters I renewable energy, on –board battery charging, wireless power transfer, power factor correction, DAB converters in solid state transformer.

- 1. Robert Erickson, Dragan Maksimovic "Fundamentals of power electronics", Springer publications, 2001.
- 2. Marian K. Kazimierczuk, Dariusz Czarkowski, "Resonant Power Converters", Wiley Publications, Second Edition, 2010.
- 3. Simon S. Ang, Alejandro Oliva, "Power-Switching Converters" CRC Press Publications, 3nd edition, 2010.
- 4. Xinbo Ruan, "Soft-Switching PWM Full-Bridge Converters: Topologies, Control, and Design" Wiley Publications, 2014.
- 5. Ivo Barbi, F. Pottker "Soft commutation Isolated DC/DC Converters" Springer Publications, 2019.

Course & Na	e Code ame	EE70	2 Solar PV Systems				
Course	е Туре	Elective	No of Credits		3		
Cou Learr Objec (CL	rse ning ctive .0)	To understand the concepts, operation, MPPT techniques, power conditioning and applications of solar PV systems					
Prerequ	uisites	-					
		CO-P(O Matrix				
Cou	rse	Lipon completion of the course t	the students will be able	Aligne	d Prograr	nme	
Outco (CC	omes Ds)	to	the students will be able	Outc PO1	omes (PC PO2	Ds) PO3	
СС	D1	Understand the fundamental concer different electrical array configuration	ot of PV cell modelling and schemes	2	2	2	
СС)2	Understand and implement various and selection of power converters fo	MPPT control strategies r PV systems	3	3	2	
СС)3	Study the different applications for systems	off-grid and on-grid PV	2	3	2	
Course	e Cont	ent:					
Intro equi	oductior ivalent (n to solar PV system, history of p circuit, electrical characteristics, PV	hotovoltaics, photovoltaic / terminology, maximum p	effect, ph power poir	notovoltai nt tracking	c cell, g.	
Max volta para circu tech insu Pow conv cont inter	 Partial shading of PV arrays, causes, effect of partial shading on PV power, hot spots, bypass diode, PV characteristics, interconnection schemes, series and parallel connection, total cross tied (TCT), honey comb(HC), bridge linked (BL), reconfiguration techniques, electrical array reconfiguration techniques, Su Do Ku based reconfiguration technique. Maximum power point tracking algorithm, direct methods, differentiation method, feedback voltage or current method, perturb and observe method, incremental conductance method, parasitic capacitance method, indirect methods, curve fitting method, look up table method, open circuit voltage sensing method, short circuit current sensing method, artificial intelligence techniques, artificial neural network, fuzzy logic, genetic algorithm, algorithm for non-uniform insulation conditions, Fibonacci search method, short current pulse method, two stage method. Power conditioning for PV System, maximum power point tracking, buck converter, boost converter, buck boost converter, CUK converter, SEPIC converter, charge controller, shunt controller, series controller, inverters, inverter operation, power quality standards, grid interconnection techniques. 						
syst moc and	systems, PV water pumping systems, grid connected systems, central inverter, string inverter, module inverter, need for energy storage in PV systems, selection of PV battery, battery charging and discharging characteristics, battery life time, battery protection and regulation.						
Refere	ence Bo	ooks:					
1.	Chetar Learnii	n Singh Solangi, 'Solar Photovoltaics ng Pvt Ltd, Delhi,2011.	-Fundamentals, Technologi	es and Ap	plications	', PHI	
2.	Van O Bristol,	verstraeton and Metens R.P,. 'Physic: 1996.	s, Technology and use of Pl	hotovoltaics	s', Adam H	-lilger,	
3.	Konrac	Mertens, 'Photovoltaics Fundamenta	ls technology and Practice',	Wiley publi	cations 20	14.	

4. Chetan Singh Solangi, 'Solar Photovoltaics Technology and Systems', 2013.

Course Code & Name	EE703 E-Vehicle Technology and Mobility				
Course Type	Elective No of Credits 3				
Course Learning Objective (CLO)	This introduces the fundamental concepts, principles, analysis and design of electric vehicles (EVs)				
Prerequisites	Electrical Machines and Power Converters, power conversion techniques				
	CO-PO	O Matrix			
Course Outcomes	Upon completion of the course, the students will be able		Programme omes (POs)		
(COs)	to		PO1	PO2	PO3
CO1	Understand the operating principle	e of electric vehicles.	2	2	2
CO2	Choose a suitable motor and pow EVs.	er electronic interface for	3	2	3
CO3	Explain various battery technologi	es.	2	2	2
CO4	Understand various charging tech	nologies for EVs	3	2	2
CO5	Understand policy perspectives ar	d innovation in e-mobility.	2	2	2

Introduction to electric vehicles: EV verses gasoline vehicles, vehicle dynamics fundamentals, edrivetrain, Electric motor, Power electronic in electric vehicles, Regenerative braking.

Battery Technology for EVs: Storage technologies for EV, Battery working principles, Battery losses, Li-ion batteries, Battery pack and battery management system.

Charging Technology of EVs: AC charging - Type 1,2,3, DC charging, Fast charging and its limitations, Smart charging and applications, Vehicle to X(V2X), X2V technology.

Future trends in e-Vehicles: Wireless charging of EV, On-road charging of EV, Battery swap technology, Solar powered EVs, Charging EVs from renewables. Vehicle communication protocol.

E-mobility: electrification challenges, business, connected mobility and autonomous mobility case study in Indian Roadmap Perspective, Policy- EVs in infrastructure system, integration of EVs in smart grid, social dimensions of EVs

- 1. Iqbal Hussain, "Electric & Hybrid Vehicles Design Fundamentals", Second Edition, CRC Press, 2011.
- 2. James Larminie, "Electric Vehicle Technology Explained", John Wiley & Sons, 2003. Mehrdad Ehsani, Yimin Gao,
- 3. Ali Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals", CRC Press, 2010.
- 4. Sheldon S. Williamson, Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles, Springer, 2013.
- 5. Sandeep Dhameja, "Electric Vehicle Battery Systems", Newnes, 2000 .http://nptel.ac.in/courses/108103009/
- 6. Tariq Muneer and Irene Illescas García, "The automobile, In Electric Vehicles: Prospects and Challenges", Elsevier, 2017.

Course Code & Name	EE704 Design of Embe	dded Controllers for S	Smart Mi	cro-Gric	1	
Course Type	Elective	No of Credits	3			
Course Learning Objective (CLO)	To enable the learner to understand the concepts of embedded controllers with its Objectives: Application to smart grids.					
Prerequisites	Digital Systems , Microprocessors/M	icrocontrollers				
	CO-P	O Matrix				
Course Outcomes	Upon completion of the course,	the students will be able	Aligne Outc	d Prograr omes (PC	rogramme es (POs)	
(COs)	to		PO1	PO2	PO3	
CO1	Understand the architecture of Embe	edded systems.	2	3	2	
CO2	Identify suitable peripherals with the	processor	2	2	3	
CO3	Understand the requirements of the real time OS and embedded networks		3	3	3	
CO4	Illustrate the typical use of FPGA as	embedded controller	3	3	3	
CO5	Apply the concepts of embedded controllers for smart grid.		3	3	3	
Course Content: Embedded System Architectures–ARM processor -architectural design- memory organization- data operation –bus configurations. System on-chip, scalable bus architectures, Design example: Alarm clock, hybrid architectures						
Sensors and Sensor	Special ICs – Voltage Sensor, Cu gement IC, Opto-couplers and Curr	rrent Sensor, Speed Sen ent amplification transisto	sor, RMS ors	calculati	on IC,	
Real time operating systems(RTOS)-real time kernel- OS tasks-task states- task scheduling- interrupt processing – Embedded Networks –Distributed Embedded Architecture- Hardware and Software Architectures, Networks for embedded systems- I2C, CANBus, Ethernet, Internet, Network- Based design- Design Example: Elevator Controller.						
Typical FPGA board qualitative analysis: FPGA IC interfacing with peripherals: ADC, DAC, display (LED, LCD), Communication networks like Ethernet.						
Study of a Sm Load Controll management.	art Micro-grid model – Sensors int ers – Communication between t	erfacing with FPGA board he controllers – Concep	d – Desigr ots of Sou	n of Sourd urce and	ce and Load	

- 1. Wayne Wolf, 'Computers as Components: Principles of Embedded Computing System Design', Morgan Kaufman Publishers,3rd Edition, 2012.
- 2. C.M.Krishna, Kang G. Shin ,'Real time systems', McGrawHill,2010.
- 3. Herma K., Real Time Systems: Design for Distributed Embedded Applications, Kluwer Academic, 2ndEdition, 2011.
- 4. WilliamHohl, 'ARM Assembly Language, Fundamentals and Techniques', CRC Press, 2009
- 5. Nazzareno Rossetti, "Managing Power Electronics: VLSI and DSP-driven Computing systems:, Wiley-Interscience Publications, 2006.
- 6. Krzysztof Iniewski, "Smart Grid Infrastructure & Networking", Mc-Graw Hill Education (India) Limited, 2012.

Course Code &	EE705 Design of Magne	etics for Power Electro	onic App	lication	S
Course Type	Elective No of Credits 3				
Course Learning Objective (CLO)	Course Learning Objective (CLO)				
Prerequisites	Electrical Machines and Power Electronics				
	CO-PO	O Matrix			
Course Outcomes	Upon completion of the course, t	he students will be able	Aligned Programme Outcomes (POs)		
(COs)	10		P01	PO2	PO3
CO1	Review the concepts of different type	es of magnetic devices.	2	1	2
CO2	Choose a suitable core and wire for t transformers.	he design of inductor and	3	2	2
CO3	Understand the effects in the windin high frequencies.	gs of the transformers at	2	1	2
CO4	Measurement of performance para transformers.	meters of inductors and	2	2	2
Course Cont	ent:				

Basic magnetics theory: Review of basic magnetics- transformer modelling-loss mechanisms in magnetic devices-eddy currents in winding conductors-several types of magnetic devices and their B-H loops.

Inductor design: Introduction- magnet wire-wire insulation- restrictions on inductors-window utilization factor- temperature rise of inductors-mean turn length of inductors-area product method-inductor design for power electronic applications.

Transformer design: Introduction-area product method-optimum flux density-area product for sinusoidal voltages-high frequency transformer design for power electronic applications.

High frequency effects in the windings: Skin effect factor-proximity effect factor-proximity effect factor for an arbitrary waveform-reducing proximity effects by interleaving the windings-leakage inductance in transformer windings.

Measurements: measurement of inductance- B-H loop-losses in a transformer-capacitance in transformer windings.

- 1. Robert W. Erickson and Dragan Maksimovic, "Fundamentals of Power Electronics", Third edition, Springer.
- 2. Marian K. Kazimierczuk, "High-Frequency Magnetic Components", second edition, Wiley 2013.
- 3. W.G. Hurley and W.H. Wolfle, "Transformers and Inductors for power electronics Theory, design, and applications", Wiley 2013.
- 4. Ned Mohan, Tore M. Undeland and William P. Robbins, "Power Electronics: Converters, Applications and Design", Third edition, Wiley 2007.
- 5. L.Umanand and S.R. Bhat, "Design of magnetic components for switched mode power converters", New age international 1992.
- 6. V.Ramanarayanan, "Course material on switched mode power conversion", Department of Electrical Engineering Indian Institute of Science Bangalore, 2017.

Course Code & Name	EE706 Power N	lanagement Integrated	d Circuits
Course Type	Elective	No of Credits	3
Course Learning Objective (CLO)	 To Review the modern Integration chips. Modelling and Design of vol 	rated circuit design concept tage and current mode co	ots in power management ontrollers.
Prerequisites	Fundamentals of Power Electronics	and Digital Electronics	narvesting Systems.

CO-PO Matrix					
Course Outcomes	Upon completion of the course, the students will be able	Aligne Outc	d Progran omes (PC	nme)s)	
(COs)	10	PO1	PO2	PO3	
CO1	Understand the Integrated circuit design concepts in power management chips.	2	1	2	
CO2	Design and Development of power management circuits for linear and switching regulators.	3	2	3	
CO3	Apply switching regulator concepts for Energy Harvesting Systems.	2	2	2	

Introduction to Power Management - Need, Linear versus Switching Regulator, Types of DC-DC Converters and Application. Type of Regulator in a Multi-Chip System; Performance Parameters - Efficiency, Accuracy, Line and Load Regulation, Line and Load Transient, PSRR; Remote versus Local Feedback, Point-of-Load Regulator, Kelvin Sensing, Droop Compensation; Current Regulators and their Applications; Bandgap Voltage Reference.

Introduction to Linear Regulator, review of Feedback Systems and Bode Plots, Loop Gain AC Analysis, Stability Criterion and Phase Margin. Finding the Poles of the Error Amplifier; Stabilising a Linear Regulator - Frequency Compensation Techniques, Dominant Pole Compensation. LDO with NMOS Pass Element; Load Regulation and Output Impedance of LDO; Line Regulation and PSRR of LDO; Sources of Error in a Regulator

Designing the Ramp Generator in a Pulse-Width Modulator, PWM modulators Trailing, Leading and Dual-Edge PW Modulators; Control Techniques for DC-DC Converters; Voltage Mode Control. Designing the Gate-Driver (Gate Buffer and Non-Overlap Clock Generator), Design Considerations of the Error Amplifier; Delays Associated with Pulse-Width Modulators.

Modelling of a DC-DC Converter, Loop Gain and Stability Analysis using Continuous-Time Model. Compensating a Voltage-Mode-Controlled Buck Converter; Designing Type-I (Integral), Type-II (PI) and Type-III (PID) Compensators; Implementation of Compensators using Op Amp-RC and Gm-C Architectures. Compensating a Voltage-Mode-Controlled Buck Converter; Designing Type-I (Integral), Type-II (PI) and Type-III (PID) Compensators; Implementation of Compensators using Op Amp-RC and Gm-C Architectures, Finding Compensation Parameters; Design Examples with Simulation and Demonstrations.

Introduction to Energy-Harvesting Systems, Energy-Harvesting Sources. Concepts of Energy-Harvesting Circuits, Energy-Harvesting Circuits for AC and DC source, MPPT tracking.

- 1. Chen, Ke-Horng. "Power Management Techniques for Integrated Circuit Design". John Wiley & Sons, 2016.
- 2. Hella, Mona M., and Patrick Mercier, eds. "Power Management Integrated Circuits". CRC Press, 2017.
- 3. Erickson, Robert W., and Dragan Maksimovic. "Fundamentals of power electronics". Springer Science & Business Media, 2007.
- 4. Grant, Duncan Andrew, and John Gowar. "Power MOSFETS: theory and applications." John Wiley & Sons, New York, 1989.
- 5. Razavi, Behzad. 'Design of analog CMOS integrated circuits. MC Graw Hill Education, 2005.

Course Code & Name	EE708 Electric Vehicle Charging Systems					
Course Type	Elective No of Credits		3			
Course Learning Objective (CLO)	Course Learning Objective (CLO)To equip students with a thorough understanding of electric vehicle (EV) charging technologies, with a focus on the design of advanced power converters for EV charging enabling them to effectively address challenges in sustainable transportation.					
Prerequisites	Power Electronics					
	CO-PO Matrix					
Course Outcomes	Upon completion of the course, the students will be able	Aligne Outc	d Prograr omes (PC	nme Ds)		
(COs)	TO	PO1	PO2	PO3		
CO1	Design of battery technology for EVs.	3	3	2		
CO2	Explore various power electronic converters for on-board battery chargers.	2	2	3		
CO3	Understand the converter technologies for semi-fast chargers	2	1	3		
CO4	Appreciate the concept of EV fast-chargers and renewable energy-based EV fast charging and its infrastructure	1	2	3		
Course Con	tent:			•		
Introduction to EV and PHEV battery technologies: Electrical modelling of energy storage systems: batteries, ultra-capacitors, flywheel, and fuel cell. Battery pack design – battery management systems – thermal management – standards. Introduction to power converters and PWM techniques for EV chargers: Slow chargers – operation, analysis, and design of on-board chargers (OBCs) – single-stage OBCs – twostage OBCs –						
Semi-Fast ch charging – th	argers: Introduction, operation, analysis, and design of integra ee-phase charging – multiphase charging – standards. Rang	ated OBCs e extensio	s – single- on perspe	phase ctives.		
Fast chargers converters –	s: Introduction, operation, analysis, and design of fast charges isolated, non-isolated, modular DC/DC converters – standard	gers – grio Is.	d facing A	AC/DC		
Renewable e EV charging	nergy based EV charging methods: Solar PV-based EV charg – Hydrogen energy for EV charging. Challenges, case studie:	ging – Win s, and poli	d energy- icies	based		
Reference B	ooks:					
1. Ibrahi syster	m Dincer, Halil S.Hamut, and Nader Javani, "Thermal managemen ns", Wiley – 2014.	t of electric	vehicle b	attery		
2. Brund vehicl	scrosati, jurgen garche and werner tillmetz, "Advances in batter es" Elesevier – 2015.	y technolo	gies for el	lectric		
3. Ali En and S	nadi, Mehrdad Ehsani, and John M.Miller, "Vehicular Electric Power pace Vehicles", Marcel Dekker, Inc. 2004.	Systems -	- Land, Se	ea, Air		
4. Sheld Vehic	on S.Williamson, "Energy Management Strategies for Electric al les", Springer, 2013.	nd Plug-in	Hybrid E	lectric		
5. Ali En	nadi, "Handbook of Automotive Power Electronics and Motor Drives	", Taylor &	Francis, 2	005.		
6. Mehro Secor	dad Ehsani, Yimin Gao, Ali Emadi, "Modern Electric, Hybrid Electri nd edition, CRC Press, 2010.	c, and Fue	l Cell Vehi	icles",		

Course Code & Name	EE712 Home Energy Management Systems			
Course Type	Open Elective	No of Credits	3	
Course Learning Objective (CLO)	 To understand the concept of home energy management, energy efficiency, automation, components, architecture and associated challenges. To realize the importance of communication standards and protocols for smart homes. To understand the concept of internet-of-things for smart home energy management and get exposure to smart appliances. 			
Prerequisites	-			

CO-PO Matrix						
Course Outcomes (COs)	Upon completion of the course, the students will be able to	Aligned Programme Outcomes (POs)				
		P01	PO2	PO3		
CO1	Understand and analyze the importance of home energy management system for optimal utilization of electrical energy.	3	1	3		
CO2	Understand the communication standards and protocols for smart homes.	2	1	3		
CO3	Design and analyze various appliances for smart home energy management.	3	1	3		

Introduction – Concept and application of home energy management systems (HEMS) and automation, requirements and design considerations - efficiency of home automation system, architecture and components of HEMS.

Energy efficiency - Home energy conservation, energy sources in household building, system control - lighting, heating, energy benchmarking, energy efficiency improvement, green building – LEED concept & examples.

Smart Home Protocols: Communication protocols such as Bluetooth Mesh, Wi-Fi, ZigBee, PAN, and IEEE 802.15.4 standard, architecture-OSI model, ZigBee mesh networks, device types, green power, coexistence with Wi-Fi, IEEE 802.15.4 spectrum usage, and Z-Wave architecture.

Introduction to IoT – Sensing, actuation, basics of networking, communication protocols, sensor networks, machine-to-machine communications. interoperability in IoT.

Smart Appliances - Smart plugs, smart fans, smart Matic kit, smart EV charging, smart monitoring and maintenance devices, smart lighting, fire alarm, parking lights. Current trends and future challenges.

Text Books:

- Antonio Moreno-Munoz, Neomar Giacomini (Editor), "Energy Smart Appliances: Applications, Methodologies, and Challenges", Wiley-Blackwell, 1st Edition, 2023.
- Fengji Luo, Gianluca Ranzi, Zhao Yang Dong, Building Energy Management Systems and Techniques Principles, Methods, and Modelling, 1st Edition - February 21, 2024, Imprint Elsevier.
- 3. Introduction to Industrial Internet of Things and Industry 4.0, Sudip Misra, Chandana Roy, Anandarup Mukherjee, CRC press, 2021.
- 4. Kostas Siozios, Dimitrios Anagnostos, Dimitrios Soudris, Elias Kosmatopoulos, IoT for Smart Grids: Design Challenges and Paradigms, Springer publishers, 2019.

- 1. Vinod Kumar Khanna, Fundamentals of Solid-State Lighting: LEDs, OLEDs, and Their Applications in Illumination and Displays, CRC press, 2014, 1st Edition.
- 2. Alasdair Gilchrist, Industry 4.0: The Industrial Internet of Things, Apress publishers, 2016.
- 3. Craig Di Louie, Advanced Lighting Controls: Energy Savings, Productivity, Technology and Applications, River publishers, 2006, e-book, 2021,1st Edition.
- 4. Geoff Levermore, "Building Energy Management Systems: An Application to Heating, Natural Ventilation, Lighting and Occupant Satisfaction", Routledge, 2nd Edition, 2000