Workshop on Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication (MDCWC2020)

May 11-13, 2020

National Institute of Technology Tiruchirappalli

Important Dates

- **Paper Submission:** 31 December 2019
- **Acceptance notification:** 15 February 2020
- **Camera ready submission and Registration:** 1 March 2020
- **Registration Fee:** ₹ 6000/- (Payment through SBI i collect)

Objective of the workshop

Due to the feasibility of collecting huge data from mobile and wireless networks, there are many possibilities of using Machine Learning, Deep-learning and the Computational Intelligence to interpret and to hunt knowledge from the collected data. The workshop aims in consolidating the experimental results integrating the Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication.

The workshop invites original research contributions in the following data driven wireless communication applications (Not limited to) implemented using one or more of the following ML, DL and Computational intelligence algorithms.

Wireless Communication

- Network prediction, Traffic classification, Call detail record mining
- Mobile health care, Mobile pattern recognition, Natural language processing, Automatic Speech processing
- Mobility Analysis, Indoor Localization
- Wireless Sensor Networks (WSN)
- Energy minimization, Routing, Scheduling, Resource allocation, Multiple access, Power control
- Malware detection, Cyber security, Flooding attacks detection, Mobile apps sniffing
- MIMO detection, Signal detection in MIMO-OFDM, Modulation recognition
- Channel Estimation, MIMO nonlinear equalization
- Super-resolution channel and direction of arrival estimation, NOMA, mm-Wave channel model, Full duplex, OFDM/FRMC, NB-IOT

Machine Learning

- Multiple input multiple output regression
- Probabilistic discriminative approach
- Multi-class logistic Regression
- Probabilistic generative model
- Support Vector Machine
- Dimensionality reduction techniques

Deep Learning

- Multi-layer perceptron
- Boltzmann Machine
- Auto-Encoders
- Convolutional Neural Network
- Recurrent Neural Network
- Generative Adversarial Network
- Deep Reinforcement Learning

Computational Intelligence

- Particle Swarm Optimization
- Bacterial Foraging
- Simulated Annealing
- Ant colony technique
- Genetic algorithm
- Social Emotional Optimization Algorithm
- Social Evolutionary Learning Algorithm

Technical Program committee (External members)

- **K K Biswas**
 - Retired Professor, Indian Institute of Technology Delhi
 - Currently at IndraPrastha Institute of Information Technology Delhi
- **Jithin Jagannath**
 - Director, Marconi-Rosenblatt AI/ML Innovation Lab
 - Research scientist, Andro computational solutions, New York
- **Akhil Gupta**
 - Lovely Professional University, Phagwara, Punjab
- **Swaminathan**
 - Indian Institute of Technology Indore
- **Vineetha Yogesh**
 - Qualcomm, Bangalore
- **Abhinav**
 - M Bit Technologies, Bangalore
- **Technical Programme committee (Internal members)**
 - P. Mathuchidambiranathan, ECE, NIT Trichy
 - B. Malarkodi, ECE, NIT Trichy
 - Varun P Gopi, ECE, NIT Trichy

Coordinators

- **Dr. E. S. Gopi**, Associate Professor/ECE, NIT Trichy
- **Dr. B. Rebekka**, Assistant Professor/ECE, NIT Trichy
- **Dr. G. Thavasi Raju**, Assistant Professor/ECE, NIT Trichy

Reference for related works

- Machine Learning Paradigms for Next-Generation Wireless Networks
- Machine Learning for Wireless Communication Channel Modeling: An Overview

Links to the dataset

- [CRAWDAD dataset](#)
- [UMass Trace Repository](#)