DEPARTMENT OF PHYSICS NATIONAL INSTITUTE OF TECHNOLOGY: TIRUCHIRAPPALLI - 620 015

Minutes of the pre-bid conference

Tender Notification No.: NITT/F.NO:SIF014/PLAN2013-14 dt: 19.12.2013

With reference to the above tender notification and the pre-bid conference held on 30.12.2013 at 3.30 PM in the committee room of Physics department, the following amendments are made.

Specification for Time resolved fluorescence spectrometer

Original tender specification	Amended specification
Time resolved fluorescence spectrometer with Time Correlated Single Photon	Time resolved fluorescence spectrometer with Time Correlated Single Photon
Counting (TCSPC) detection technique. The system should come with Sample	Counting (TCSPC) detection technique. The system should come with Sample
Compartment, Emission Polarizer, Emission Monochromator, Detector, Data	Compartment, Emission Polarizer, Emission Monochromator, Detector, Data
Acquisition System, and Software for data analysis and Excitation Sources. The	Acquisition System, and Software for data analysis and Excitation Sources- The
system should capable of measuring fluorescence lifetime down to 60 picoseconds or	system should capable of measuring fluorescence lifetime down to 60 picoseconds
less with lasers as excitation sources and fluorescence lifetime down to 100	or less with lasers as excitation sources and fluorescence lifetime down to 100
picoseconds or less with LEDs (Light emitting diodes) as excitation sources.	picoseconds or less with LEDs (Light emitting diodes) as excitation sources.
1. System description: The system should be Time correlated Single Photon Counting	1. System description: The system should be Time correlated Single Photon
based, Compact, and Modular.	Counting based, Compact, and Modular.
2. Light source should be Pulsed LED and Laser diodes with synchronization features.	2. Light source should be Pulsed LED and Laser diodes with synchronization
Pulsed LED Source	features.
Wavelength - Pulsewidth (OPTIONS)	Pulsed LED Source
260nm (±3nm) ~1ns	Wavelength - Pulsewidth (OPTIONS)
280nm (±3nm) ~1ns	260nm (±3nm) ~1ns
330nm (±3nm) ~1ns	280nm (±3nm) ~1ns
375nm (±3nm) ~1ns	330nm (±3nm) ~1ns
405nm (±3nm) ~1ns	375nm <mark>(±5nm)</mark> ~1ns
450nm (±3nm) ~1ns	405nm (±3nm) ~1ns
	450nm (±3nm) ~1ns

Pulsed Laser Source (OPTIONS)	Pulsed Laser Source (OPTIONS)
Wavelength Pulse width	Wavelength Pulse width
377 nm (±3nm) 40 ps to 200ps	377 nm (±3nm) 40 ps to 200ps
405 nm (±3nm) 40 ps to 200ps	405 nm (±3nm) 40 ps to 200ps
425 nm (±3nm) 40 ps to 200ps	425 nm (±3nm) 40 ps to 200ps
440 nm (±3nm) 40 ps to 200ps	440 nm (±3nm) 40 ps to 200ps
470 nm (±3nm) 40 ps to 200ps	470 nm (±3nm) 40 ps to 200ps
490 nm (±3nm) 40 ps to 200ps	490 nm (±3nm) 40 ps to 200ps
510 nm (±3nm) 40 ps to 200ps	510 nm (±3nm) 40 ps to 200ps
635 nm (±3nm) 40 ps to 200ps	635 nm (±3nm) 40 ps to 200ps
650 nm (±3nm) 40 ps to 200ps	650 nm (±3nm) 40 ps to 200ps
730 nm (±3nm) 40 ps to 200ps	730 nm (±3nm) 40 ps to 200ps
3. Monochromator : Emission monochromator of 100mm or better focal length and	3. Monochromator : Emission monochromator of 100mm or better focal length and
stray light rejection $>1x10-5$ should be provided. Slit width adjustable.	stray light rejection $>1x10-5$ should be provided. Slit width adjustable.
4. Fluorescence Lifetimes range: from < 100 ps to 50 ms.	4. Fluorescence Lifetimes range: from < 100 ps to 50 ms.
5. Sample Holder: 1x1 cm quartz cuvettes (4 nos) for liquid sample and solid sample	5. Sample Holder: 1x1 cm quartz cuvettes (4 nos) for liquid sample and solid sample
holder	holder
6. Sample chamber Featuring temperature controllable single cuvette holder should be	6. Sample chamber Featuring temperature controllable single cuvette holder should
provided. Front face sample holder should be quoted.	be provided. Front face sample holder should be quoted.
7. Detection Range: From 250 nm to 850 nm with TE Cooled PMT with low noise	7. Detection Range: From 250 nm to 850 nm with TE Cooled PMT with low noise
level.	level.
8. Anisotropy Measurements: Motorized Polarizer's for the above said wavelengths.	8. Anisotropy Measurements: Motorized Polarizer's for the above said wavelengths.
9. Computer: Dedicated computer with latest specifications should be provided.	9. Computer: Dedicated computer with latest specifications should be provided.
	(Minium requirements :Intel Core i7 Processor 3470, 3.2 GHz upto 3.6 GHz, 6M,
	vPro, 3rd Generation processor, 4 Core, Intel Q77 Express Chipset based
	motherboard or better chipset, 8 GB DDR3 SDRAM Non-ECC (1600 MHz) Dual
	Channel, Single 500 GB 7200 rpm,32MB buffer, SATA 3.0, 6 Gb/s. Specify the
	make & Size of the HDD, USB Keyboard (Windows Keyboard with US key layout),
	USB 2-button optical mouse with scroll and Mouse Pad, Integrated 10/100/1000 -Tx
	NIC with PXE BOOT ROM support, Should support min True color (16.7 million

	colors) at 1920 x 1200, 24-bit, Without OS (windows xp/7/8))
	10. Software: Windows based Software for spectrometer control, performance
10. Software: Windows based Software for spectrometer control, performance	monitoring, fluorescence lifetime data acquisition, anisotropy with G-Factor
monitoring, fluorescence lifetime data acquisition, anisotropy with G-Factor	correction, temperature control and data analysis particularly 1 to 4 exponential
correction, temperature control and data analysis particularly 1 to 4 exponential decay,	decay, global, non exponential, micelle kinetics, life time distribution, FRET
.global, non exponential, micelle kinetics, life time distribution, FRET calculator.	calculator.
11. The Instrument Electronics should have the Timing jitter < 10 ps or better and	11. The Instrument Electronics should have the Timing jitter ≤ 25 ps or better and
Less susceptible to PC originated noise with 8K histogram (greater dynamic range).	Less susceptible to PC originated noise with 8K histogram (greater dynamic range).
12. Sample Compartment: Bigger sample compartment for attaching LN Cryostat and	12. Sample Compartment: Bigger sample compartment for attaching LN Cryostat
suitable for both Liquid and solid samples	and suitable for both Liquid and solid samples
13. OPTIONAL :Cryostat : Suitable Liquid Nitrogen cryostat with connecting	13. OPTIONAL :Cryostat : Suitable Liquid Nitrogen cryostat with connecting
accessories.	accessories.
14. UPS: On-line 10KVA UPS with 30 min to 60 min back up with sin output	14. UPS: On-line 10KVA UPS with 30 min to 60 min back up with sin output
15. On site installation and training to NIT – faculty.	15. On site installation and training to NIT – faculty.
16. Users Manual	16. Users Manual

Star Kuty an

Dr. B. Karthikeyan, Asst. Prof., Department of Physics, NIT-Trichy