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1 An Initiation into Linear Algebra

Linear Algebra is an old course. It was in the domain of mathematicians for a
long time, with sporadic applications in, and hence some contributions from,
engineers especially in the computer sciences and electrical engineering de-
partments. However, the ideas of linear algebra presently have a huge impact
on a host of engineering topics and there is a rush outside. Consequently, any
interested learner has multiple options of video lectures, certificate courses,
much better written artilcles and textbooks. While the so-called modern
control is built heavily on the concepts of linear algebra, and is being taught
in engineering schools over the last three decades, or even more, an appro-
priate introduction and guidance has been away and there is every need for
the student to learn it ab initio. This short primer (of 40 odd pages) has two
parts. The first part, a slightly longer one, develops the ideas from scratch;
the theme is that all of us know the subject informally, but it is time to
erase possible pitfalls and learn (which is different from mere knowing) it
more formally. The second part, perhaps very short in contrast, attempts to
align the material from the first part with formal definitions and algorithms,
through carefully chosen arguments and examples. We avoid theorems and
proofs for want of space; nevertheless they are readily available elsewhere for
an initiated student.

Routinely, we learn about eigenvalues (the key concept of linear alge-
bra) through bland definitions: non-trivial solutions, ti 6= 0 of the linear
system(A − λiI)ti = 0 are called eigenvectors, and the scalars λi are called
eigenvalues. We do not gain much insight into the concept by reading this.
It appears that the intuition takes a back seat all of a sudden, without prior
notice and observations, and the manipulative skills to solve numericals take
the driver’s seat. In this note we try to present the concepts via insightful
questions first and then develop more formal arguments which eventually
align with the standard theories. We assume that the reader is familiar with
alphabet of matrices – elements, rows, columns, vectors, addition and (non-
commutative) multiplication of matrices. A formal course on linear algebra
begins with vector spaces where the eigenvalues and eigenvectors of matrices
play a key role. We will begin with building a bridge to linear algebra.

1.1 Matrices in Day-to-Day Matters

Let us begin with a familiar problem disguised as a game as follows. An
honest, as well as intelligent, storekeeper at an Institute of Mathematics sells
exotic souvenir items 1, 2, · · · , n, but he insists that every buyer should buy
at least two different items; to the buyer he does not disclose the individual
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prices xi, but bills her exact amount bi; however, the buyer is not permitted to
visit the store for a second time. A curious student buyer, together with her
friends, brainstorms about determining the prices and develops the following
strategy, which the reader too would have thought.

First, let us assume there is only one item in the shop. This leads to

a11x1 = b1

where a11 is the number of units purchased and b1 is the amount paid, from
which the price x1 of the item can be readily determined, provided a11 6= 0.

Next, if there are two items, she would first model her transaction as
follows:

a11x1 + a12x2 = b1 (1)

where a11 and a12 are the number of units of item #1 and item #2 respec-
tively, and b1 is the cumulative amount paid to the storekeeper. Then, she
would encourage one of her friends to make a different transaction. Quite
obviously, the friend cannot repeat the first transaction – this leads them
nowhere; the second transaction:

a21x1 + a22x2 = b2 (2)

where a2i is the number of units of item #i purchased by the friend. This
model of transaction must be independent of the first transaction in the sense
that the well-known condtion:

a11

a21

6= a12

a22

or, equivalently, a11a22 − a12a21 6= 0 (3)

holds, i.e., the friend not only cannot repeat the original transaction, but
cannot make any proportionate transaction. This condition generalizes, in a
strong sense, the trivial requirement of a11 6= 0 in the simplest scalar case
mentioned above. Indeed, a -ve sign appears from nowhere, but this helps us
choose coefficients appropriately. We will make a more detailed commentary
on this most important concept of independence on the fly.

A natural question is – is there a clever way of choosing a21 and a22?
Without much effort one can simply think of a21 = a11 (not violating eqn.
(3)) so that the difference b1 − b2 in the bills is proportional to x2; with x2

known, it is easy to compute x1. In terms of matrices and vectors, the above
two transactions can be put together as follows:[

a11 a12

0 a′22

] [
x1

x2

]
=

[
b1

b′2

]
(4)
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where a′22 = a22− a21 and b′2 = b2− b1. More generally, if a21 = k · a11, where
k is a scalar, then a′22 = a22 − k · a12 and b′2 = b2 − k · b1; this gives more
freedom to the second buyer.

If the elements aij of the matrix are such that

a11

a21

=
a12

a22

= k

(
=
b1

b2

)
(5)

then r1 − k · r2 = 0, where ri indicates the ith row of the matrix, and this
is an indication of proportionality or dependence of the rows. We look for
independence.

Let us generalize this a little more now. For a unique solution, first, we
wish that the 2nd row is not proportional to the first row, as in the 2 × 2
matrix case. Extending the argument logically, in a n × n case, what we
expect is the following:

either row 1 6∝ row 2

∨ row 1 6∝ row 3
...

∨ row 1 6∝ row n (6)

where ∨ stands for the logical disjunction, “or.” If there is at least one pro-
portionality satisfied, then the uniqueness of the problem would be shattered
as we establish a few steps ahead. Put together, we have that

r1 6=
n∨

i=2

αiri (7)

or, translated mathematically,

∃αi : α1r1 −
n∑

i=2

αiri 6= 0 (8)

where αis are proportionality constants such that αi 6= 0 indicates propor-
tionality and, the complement αi = 0 indicates no proportionality. Accord-
ingly, the entire expression is treated as a sum of products in the Boolean
sense.

Formally, we look at an algebraic addition of the scaled rows of the matrix:

2≤k≤n∑
i=1

αiri = α1 · r1 + α2 · r2 + · · ·+ αk · rk (9)
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known as a linear combination of the rows. The rows r1 to rk are said be
linearly independent, generally written as l.i., if the linear combination is
such that

∑
αiri = 0 if and only if α1 = α2 = · · ·αk = 0; otherwise, the k

rows are linearly dependent. More on this a little later.
The idea is now clear – for the number of items n, it is necessary and

sufficient1 to have n friends making n transactions which can be packed as
follows: 

a11 a12 a13 · · · a1n

0 a′22 a′23 · · · a′2n
0 0 a′′33 · · · a′′3n
...

. . .

0 0 0 · · · a
(n−1)
nn




x1

x2

x3
...
xn

 =


b1

b′2
b′′3
...

b
(n−1)
n

 (10)

It is necessary because if the transactions is one less, then the price of
one of the items remains indeterminate, and sufficient because one more
transaction is redundant. Needless to say that none of the pivot elements,
a11, a

′
22, · · · a

(n−1)
nn , along the principal diagonal is allowed to be a zero. There

is a slight difference between diagonal elements and pivots – a diagonal ele-
ment aii becomes a pivot if the elements of ith row, ai1 · · · ai,i−1, are reduced
to zero by way of performing “scaling-and-adding” operations, a.k.a. linear
combinations, on the rows.

In the general case, where the transactions can be arbitrary with more
freedom to the buyers, what is essential is to establish the independence, akin
to eqn. (3), among the n transactions, which in turn would ensure non-zero
pivots in every row of the matrix.

First things first, as n gets bigger the number of possible transactions
explodes combinatorially; we should be able to arrive at a method to decide
whether a given set of n arbitrary transactions are independent. We wish to
ask:

? Is the matrix “qualified” to offer a unique solution

Because the pivotal positions are unique, it follows that the number of pivots,
which is the same as the number of independent rows in A, is also uniquely
determined by the entries in A. This integer is called the rank of A. Thus,
the answer to the above question is yes if the matrix has full rank, n. We
continue our investigation by asking: How do we detect if the rank < n? We
will do this first with n = 3 and then generalize it to n.

We will quickly study the following matrices which are indicative and
illustrative of possible transactions. For convenience, let us assume that the

1literally
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store has 3 units of each of the 3 items.

A1 =

 3 1 1
0 2 1
0 0 1

 , A2 =

 3 2 1
0 1 1
0 0 1

 , A3 =

 1 2 1
1 1 2
1 0 0

 ,
A4 =

 1 1 1
1 1 1
1 1 1

 , A5 =

 3 1 1
0 1 1
0 1 1


We get an insight with the following observations:

1. Matrices A1 and A2 present straight cases.

2. A3 is not so straight, yet it gives us important clues. First, x1 can be
computed straight. Algebraically, yes making it formal gradually, the
information in A3 may be recast as

A′3 =

 0 2 1
0 1 2
1 0 0


by replacing the first row with the difference between first and third
rows, and similarly replacing the second row with the linear combina-
tion r2 − r3. Having solved for x1 uniquely using the third row, we
should be able to focus on the top right square block – rows 1 and 2,
and columns 2 and 3, obtained by deleting the first column and the
last row. We recognize that eqn. (3) stands satisfied, and thus we get
x2 and x3 uniquely.

3. With the experience gained so far, proportionality is way too obvious
(though we are yet to formally prove it) and matrix A4 does not serve
any purpose and we discard it.

4. Matrix A5 may tend to fool us with its deceptive similarity to A3.
A step deeper, we readily see that two of the buyers (rows 2 and 3)
essentially make the same purchase, and hence our problem remains
unsolved as a result of the vanishing pivots.

Let us now take any 3× 3 matrix:

A = [aij] , i, j = 1, 2, 3

Suppose buyer #1 completed his transaction: Σa1jxj = b1. Then, the strat-
egy for the other two buyers is such that any two of xi are uniquely solvable
so that substituting them in the first transaction yields the third xi. This
can be done in three different ways, for a 3× 3 case –
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1. Irrespective of a21 and a31, i.e., quantities of item 1 bought by buyers
#2 and #3, ensure that a22a33 − a23a32 6= 0 so that x2 and x3 may be
determined from the 2nd and (logical conjunction ∧) 3rd transactions
followed by x1 from the first transaction with a11 as the pivot, i.e.,

(a11 6= 0) ∧ (a22a33 − a23a32 6= 0) (11)

or (∨)

2. Irrespective of a22 and a32, ensure that a21a33 − a23a31 6= 0 so that x1

and x3 may be determined, while a12 is the pivot to determine x2, i.e.,

(a12 6= 0) ∧ (a21a33 − a23a31 6= 0) (12)

or (∨)

3. Irrespective of a23 and a33, ensure that a21a32 − a22a31 6= 0 so that x1

and x2 may be determined, while a13 serves as the pivot to compute
x3, i.e.,

(a13 6= 0) ∧ (a21a32 − a22a31 6= 0) (13)

We need to look into stiching these three statements logically together, i.e.,
identify the disjunction∨

{(a11 6= 0) ∧ (a22a33 − a23a32 6= 0) ,

(a12 6= 0) ∧ (a21a33 − a23a31 6= 0) , (14)

(a13 6= 0) ∧ (a21a32 − a22a31 6= 0)}

so that we are assured of a unique solution. We do this by looking at the
contradiction that does not lead to a solution. Suppose that the first row
is a linear combination of the second and the third rows, i.e., let there exist
scalars α1 6= 0 and α2 6= 0 such that

a11 = α1a21 + α2a31, a12 = α1a22 + α2a32, and a13 = α1a23 + α2a33

Substituting this in the three logical statements above and separating out
the terms multiplied by α1 and α2, we get

S1 : α1 (a21a22a33 − a21a23a32) + α2 (a31a22a33 − a31a23a32)

S2 : α1 (a22a21a33 − a22a23a31) + α2 (a32a21a33 − a32a23a31)

S3 : α1 (a23a21a32 − a23a22a31) + α2 (a33a21a32 − a33a22a31)(15)

We seamlessly observe that

S1− S2 + S3 = 0 ∀α1, α2 6= 0 (16)
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and the transactions are dependent. In other words, the sum of products

∆3 = a11 · (a22a33 − a23a32)

− a12 · (a21a33 − a23a31)

+ a13 · (a21a32 − a22a31) (17)

is an indication of the proportionality among three transactions – the three
rows of the matrix are independent ⇔ ∆3 6= 0. This is a generalization to
eqn. (3), and this can be extended to accommodate any number of transac-
tions.

The above argument may be equivalently presented from the point of
view of items as well.

1. Suppose buyer #1 purchased item #1; then the other two buyers should
make their purchases in such a way that a22a33 − a23a32 6= 0; this is
same as the first piece of the previous argument.

2. Suppose, now, buyer #2 purchases item #1, then we find that a12a33−
a13a32 6= 0, and

3. if buyer #3 purchases item #1, then we find that a12a23 − a13a22 6= 0.

And, we may now work out a bit routinely to figure that

∆3 = a11 · (a22a33 − a23a32)

− a21 · (a12a33 − a13a32)

+ a31 · (a12a23 − a13a22) (18)

also.
Thus, we may check for the row independence, as well as column inde-

pendence. An avid reader would notice two quick things – eqn. (17) and
eqn. (18) both have 6 terms – 3 +ve and 3 -ve, and moreover, it is actu-
ally the same set of 6 products (containing all the 9 elements of the matrix)
but seen starting with a different header. Morphing algebraically, ∆3 can be
computed in 6 equivalent ways – along the three rows, and along the three
columns. For instance, along the second row,

∆3 = − [a21 · (a12a33 − a13a32)

− a22 · (a11a33 − a13a31)

+a23 · (a11a32 − a12a31)] (19)

It is with a purpose, the sign convention, that we jumbled the triplets and
brought out the -ve sign outside. Looking back at eqn. (3), since we are pri-
marily interested in checking whether the expression evaluates to a zero or not
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from the ratios, we might equally likely consider the difference a12a21−a11a22.
However, the earlier one has been universally accepted and the reader must
have been familiar with similar cross-multiplication arithmetic in high school.
In fact, from the second row point-of-view, the matrix may be rewritten as ← row 2 →

← row 3 →
← row 1 →

 (20)

to justify the sign convention – products downwards are +ve and upwards
are -ve.

Henceforth, we call the expression in eqn. (3) as ∆2. Since a non-zero
∆1 (= a11), or ∆2, or ∆3 is necessary for a unique solution, we call them
determinants of the matrices, denoted as |A|. We need to stick to such
details because in addition to checking whether it is zero or not, its magnitude
as well as sign play an important role in subsequent theory and applications.
One may, out of sheer curiosity, refer to a dictionary to find that

determinant (Oxford Dictionary): a factor which decisively affects the na-
ture or outcome of something – e.g., pure force of will was the main deter-
minant of his success.

Next, we take up the general case of a n×n matrix and develop a uniform
formula that is applicable for any square matrix. For every element aij of
the matrix (of size ≥ 2× 2), we define

Minor Mij
∆
= determinant of the lower order matrix obtained by

deleting ith row and jth column

Going by this,
∆2 = a11M11 − a12M12

∆3 = a11M11 − a12M12 + a13M13

also.
Notice that we have been walking along the first row. We might also

observe that, in the case of 2× 2 matrix, if we walk along second row we get
the negative of D2. In case of D3 we have already shown that walking along
2nd row needs changes in the sign, and the original sign pattern restores for
the third row, i.e.,

∆3 = −a21M21 + a22M22 − a23M23

= +a31M31 − a32M32 + a33M33
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Accordingly we make the following additional definition:

Co-factor, Cij
∆
= (−1)i+jMij (21)

so that walked along any ith row for any n× n matrix,

∆n =
n∑

j=1

ajiCji (22)

This is the well-known Laplacian expansion of a determinant. Here we get
two interesting observations:

1. We can walk along columns also. For instance,

∆2 = a11C11 + a21C21 = a12C12 + a22C22

is readily found to conform. when n = 3, it is indeed meaningful to
have the strategic statements such as: irrespective of the purchase of
buyer #i, the purchase by the remaining two buyers should be able to
yield the prices of two items. Accordingly, in general, walking along
any jth column,

∆n =
n∑

j=1

aijCij (23)

2. Since the basic idea is that all the n buyers make n independent trans-
actions, walking across rows/columns yields no result, equivalent to
dependence. In other words,

a11C12 + a12C22 + a13C32 = 0 (24)

and so are other similar sum of products
∑
aijCpq, i 6= p and j 6= q.

These two observations may be neatly expressed in the following matrix
equation:

[aij] [Cij]
T = ∆n · In = [Cij] [aij]

T (25)

where the transposition of one of the matrices is obvious, and In is the identity
matrix of size n.
We define adjoint of A,

adj(A)
∆
= [Cij]

T (26)

leading to

A · adj(A)

∆n

= In
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from which we readily understand that the inverse of a matrix is

A−1 ∆
=

adj(A)

∆n

(27)

Evidently, the inverse A−1 exists if and only if all the rows, and now all the
columns as well, are independent; in other words,

displaystyle∃A−1 ⇔ ∆(A) 6= 0

We will close this section with an example.

Example 1: Let

A =

[
3 0
4 1

]
The matrix of minors is

M =

[
1 4
0 3

]
The matrix of cofactors is

C =

[
1 −4
0 3

]
Hence, the adjoint is

adj(A) =

[
1 0
−4 3

]
from which determinant is

∆2 = 3 · 1 + 0 · (−4) = 3 = 4 · 0 + 1 · 3

expanded along the two rows; column-wise expansion would also yield iden-
tical result, and the reader may quickly verify. and, the inverse of A is

A−1 =
1

3

[
1 0
−4 3

]
One may readily verify that A · A−1 = A−1 · A = I2

To sum up, a set of n rows is l.i. if and only if the determinant ∆n 6= 0. In
the most ideal case independent rows show up readily in a diagonal matrix,
with non-zero diagnonal elements. In a more practical case we see a triangular
matrix. Arbitrary matrices need to be investigated further by computing
the determinant. Interestingly, there are innumerable possibilities in the
placement of the elements of an arbitrary n× n matrix, and each possibility
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has a thick story; for instance, the reader must have been already familiar
with certain symmetric matrices whose inverses are the matrices themselves,
i.e., ∃A : AT = A and A−1 = A or A2 = I, and such matrices are known as
orthonormal if the elements are real, or unitary matrices, more generally,
if the elements are complex numbers.

At this juncture, we make some subtle and not too intuitive observations
that help us align with the mainstream linear algebra.

1. First, the store has n items; this can be one (of course, we have no fun),
or two, or a large finite number N , or even infinity. In a way, if there
is something very special about these n items (say, exotic ice-cream
flavours2 not available elsewhere) from that store then we attribute the
store with the number n of items.

2. Secondly, in some sense one can think of these n items as distinct (from
each other) but could be ‘combined’ to make more items; one can have
one scoop of vanilla flavour and two scoops of chocolate flavour and
enjoy the combination of ice-creams. This permits us to have an in-
finitely big store where every item is either one of the n base items, or
combinations of the base items; we consider that combinations of com-
binations are still combinations of the base items. The combinations
need a lot of creativity, obviously.

3. Next, if we look at the combined items little more closely, we see that
they are either homogeneous, e.g., ‘two’ scoops of chocolate, or two or
more flavours added to each other, or both; for instance, one can take
away a combination like x1 + 2x2 +

√
5x4. Thus, we do speak about

what are known as linear combinations.

4. Next, there is certainly a possibility of the store getting empty by
removing all the items, and furthermore there could be orders pending
arrival of fresh stocks.

5. Next, we can look at a “transformation,” say, from the quantities or
rates of items purchased to the bills paid, and vice-versa; in fact, we
have begun our story with this, visualizing a simple linear system of
equations where the individual rates xi have been transformed by the
store keeper to the bills paid by each of the friends, and the friends
figuring out a transformation the other way round.

2Baskin-Robbins is known for its “31-flavour” slogan, intending to serve customers with
a different flavour every day of any month.
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6. Last, but not least, we are looking at general structures. Needless to
say, once we are able to establish a clean transformation, e.g., n friends
making n independent transactions, we have our problem formulated.
When we look around we see a multitude of problems formulated in
very much the same way, and if we have an algorithm to solve this
structure called linear system of equations, then we have done our job.
More specifically, we are equipped with tools such as vectors and ma-
trices, and a set of well-defined operations like matrix-matrix products,
determinants, inverses and so on.

With these observations, we may now look at a formal definition of a linear
vector space as follows. This helps us immensely in quantifying the afore-
mentioned features – clean transformation among the data gathered, and
the algorithm to infer the unknown for a general, usually larger, n. We
purporsefully avoid emphasizing such things as symbols or names or appli-
cations; nevertheless, properties derived exclusively from the structure will
hold for anything that has the same structure. Most appropriately, we say
all such problems have a vector-space structure.

1.1.1 Formal Definition of a Vector Space

We will first briefly introduce one of the three major structures of algebra
which underlie our operations, theorems, and results in vector spaces.

Field F

A field is any number system in which, roughly speaking, we can add, sub-
tract, multiply, and divide according to the usual laws of arithmetic.

Typical examples include the reals <, the complex numbers C, and a finite
set of prime numbers. One may readily realize that the set integers cannot
make a field.

The other two structures are called Groups and Rings and are covered in
detail in courses in abstract algebra. Interested reader may refer to the
references.

Vector Space over F

A vector space Vn(+, ·) over a field F is a non-empty set

{v1, v2, · · · , vn, vn+1, · · ·}

of mathematical objects called vectors, together with
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� a rule ‘+’ for adding a pair of vectors, say vi and vj to produce vk =
vi + vj which also belongs to the same space Vn, and

� a rule ‘·’ for scaling any vector vi with a scalar αi ∈ F such that
αi · vi ∈ Vn.

Moreover, there must exist a vector 0̄ (read as the zero vector, or more
appropriately the origin) in Vn as well as the vector −vi, the negative of any
vector vi ∈ Vn, satisfying the following axioms3 4:

∀α0, α1, α2 ∈ F and ∀v0, v1, v2, v3 ∈ Vn

S1. α0 · (v1 + v2) A1. v1 + v2

= α0 · v1 + α0 · v2 ∈ Vn = v2 + v1 ∈ Vn

S2. (α1 + α2) · v0 A2. (v1 + v2) + v3

= α1 · v + α2 · v0 ∈ Vn = v1 + (v2 + v3) ∈ Vn

S3. (α1 · α2) · v0 A3. ∃0̄ ∈ Vn : 0̄ + v = v ∈ Vn

= α1 · (α2 · v0) ∈ Vn

S4. ∃1 ∈ F : 1 · v = v ∈ Vn A4. v + (−v) = 0̄ ∈ Vn

Remark: Observe that ‘·’ operation just ‘scales a vector’; that is why we
enumerated the axioms as S1 to S4 (‘S’ for scaling) whereas the reader would
have found M1 to M4 elsewhere. Multiplication of two vectors is not a part
of the structure, though certain products, e.g., dot product, can be defined
and they are treated as additional structure on the vector space.

Example 2: The set of integers Z over the field F of integers is a vector
space. However, if the field is all real numbers the set Z is not a vector space.
Typically, < over < qualifies as a vector space, so much so that we perform
the two operations, without even acknowledging it as a space; we refer to it
simply as the real line, with a 0 and a unit 1.

One can also look at the x-y axes: < × <, familiar from childhood, as a
vector space <2 over <. In almost every practical application we get <n over
<.

3The German mathematician Hermann Grassmann (1809–1877) is generally credited
with first introducing the idea of a vector space in 1844. Unfortunately, his work was
very difficult to read and did not receive the attention it deserved. Later, the Italian
mathematician Giuseppe Peano (1858–1932), in his 1888 book Calcolo Geometrico, clar-
ified Grassmann’s work and laid down the axioms for a vector space as we know them
today. Peano’s axiomatic definition of a vector space also had very little influence for
many years. It was only in 1918, after Hermann Weyl (1885–1955) repeated it in his
book Space, Time,Matter, an introduction to Einstein’s general theory of relativity the
community accepted the axioms.

4An axiom is a statement that is taken to be true, to serve as a premise or starting
point for further reasoning and arguments. The word comes from ancient Greek axiōma,
meaning ‘that which is thought-worthy or fit,’ or ‘that which commends itself as evident.’
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With the two rules of scalar multiplication and (ordinary, well-known)
addition we now formally define

n∑
i=1

αivi = α1v1 + α2v2 + · · ·+ αnvn (28)

as a linear combination of the vectors vi ∈ V using the scalars αi ∈ F ,
nicely put as saxpy for scalar a x plus y by Golub and Van Loan [6]. Follow-
ing the axioms we understand that the result of such a linear combination
is another vector in the same space. We may be tempted to examine this
newly constructed vector in more details.

1. Suppose the linear combination results in a scaled version of any of the
n vectors, i.e.,

α1v1 + α2v2 + · · ·+ αnvn = βivi, βi ∈ F

It is easy to see that

vi =
∑
j 6=i

α′jvj, not all α′j = 0

i.e., vi is now a linear combination of the rest of the vectors. If such is
the case, we say that the set of vectors vi · · · , vn is linearly dependent.

It is interesting to note that, among the given set of n vectors, if there
is the zero vector then the set is linearly dependent. The converse is
not necessarily true.

2. On the other hand, in fact negating logically the above observation,
we formally define a set of vectors v1, · · · , vn is linearly independent
(l.i. in short)

α1v1 + · · ·+ αnvn = 0 ⇔ αi (∈ F) = 0, i = 1, · · · , n

In other words, there is no linear relation among the vectors in the set,
except the trivial one in which all the coefficients αi are zero.

The following hypothetical example illustrates several ideas.

Example 3:

If we consider the 26-letter English alphabet, where in place of z the
letter h repeats, we will not be able to access words containing z, and the
additional h does not help us; our vocabulary is restricted.
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Let us, for a moment, imagine of these 26 letters as vectors ∈ A26:

va =


a
0
0
...
0

 , vb =


0
b
0
...
0

 , · · · , vz =


0
0
0
...
z


It is easy to infer that this is a l.i. set – none of the vectors can be obtained
as a linear combination of the others. If vh replaces vz we will have

0 · va + 0 · vb + · · ·+ 1 · vh + 0 · vi + · · · + (−1) · vh = 0

i.e., there exist two non-zero scalars, αh = 1 and αz = −1, to prove that it a
linearly dependent set.

Implicit in this example is a core idea. If the space has exactly n inde-
pendent vectors and, hence, any other vector is a unique linear combination
of the independent ones, we say the vector space is n-dimensional, and
the superscript of the symbol Vn indicates this. Recall that we have earlier
mentioned this in terms of unique attributes of the objects. Hence, while
representing each object as a vector we spell out its uniqueness in terms of
(the same) n number of “components”; neither less, nor more. Needless to
say, the components must be such that the set of vectors does not loose its
independence; va, for instance, differs from every other vector is readily seen
from the 25 zeros in the vector.

Example 3 [contd...]:

Let us now look at the word “coffee.” Since it has a ‘c’, two ‘e’s, two ‘f’s,
and a ‘o’, we write it as

vc + 2ve + 2vf + vo ∈ A26

Of course, we need to process further to make the new vector in non-negative
integers look like the english word, but we do not go that far as of now.

As a next step, we make a matrix out of the l.i. independent set of n
vectors but simply placing them as columns as follows:

A =
[
va vb · · · vy vz

]
An immediate observation is that this is a diagonal matrix of size 26 × 26,
with the alphabet along the principal diagonal. We use this matrix to pre-
multiply the vector:[

0 0 1 0 2 2 · · · 1 · · · 0
]T
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where each row corresponds to a letter of the alphabet, typically arranged in
the alphabetical order. In other words, for a ‘c’ we have a 1 in the 3rd row, a
2 in the 5th row, and so on to represent the word ‘coffee’ as vc +2ve +2vf +vo
with 4 non-zero entries in the vector.

Remark: The vector space has english words, including the alphabet, and
the field has non-negative integers. Thus, technically speaking, every vector
in Vn is mapped to another vector whose n-components are drawn from the
field F .

Following this shall be an important question the reader should have
raised – does every vector space contain a unique set of l.i. vectors? Since
every vector space, e.g., english dictionary as above, has a large number of
distinct vectors each of which must have been made up of elementary vectors
there always exist at least one set of l.i. elementary vectors in <n:

ei =

{
1 in the ith row
0 rest of the rows

(29)

The number of such vectors is also identical to the dimension n of the space,
meaning that rest of the vectors in the space may be generated as linear
combinations of the elementary vectors. Going back to example 3, however,
it is interesting to note that one of the elementary vectors, e.g., va may be
replaced by a linear combination of va and some other vectors, say, vb and
vc, such that the new set of n vectors is linearly independant. For instance,
we may easily verify using the definition, that the set

{va, vb, vc, vd, vef , vf , · · · , vz} with vef = ve + vf

is also l.i.
Hence, there could be infinitely many sets of l.i. vectors. Moreover every

such set may be represented by a square matrix, though not necessarily
(why?) diagonal. Accordingly, other vectors have different representations –
coffee = vc + 2vef + vo with only three non-zero entries.

This observation from the above example leads to a very important con-
cept. Any set of n linearly independent vectors of a n-dimensional vector
space Vn constitutes a basis B. Every other vector, a linear combination of
this set of vectors, has a unique representation in Fn with reference to the
basis5 in context.

5Courtesy: Anu Garg, wordsmith.org.
What can one do with just seven letters? You’d think that would be limiting, but music

made with those seven notes A-G can move the world. It’s not the number of notes on your
keyboard or the number of letters in your alphabet. It’s what you do with them, how you
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Definition: Isomorphism

An isomorphism ϕ from a vector space V to another vector space V ′, both
over the same field F , is a bijective6 map ϕ : V → V ′ compatible with the
operations + and ·, i.e.,

ϕ : ϕ

(∑
i

αivi

)
=
∑
i

(αiϕ (vi)) (30)

A very simple example is to view the set C of complex numbers as a real
vector space <2, i.e., the map ϕ : <2 → C sending an ordered pair (r1, r2)
of real numbers to r1 + jr2 is an isomorphism. Electrical circuit theory is
completely based on this isomorphism.

Along similar lines, the space Fn of n-dimensional vectors drawn from
the field F is isomorphic to the space Vn.

It follows that it is mandatory to mention the basis whenever we address
a vector; needless to say, there are infinitely many bases (plural for basis)
to choose from and other vectors put on different appearances. Perhaps the
best example to cite here is the number 10. By default, we think of decimal
number system and it is ten for us, but for a machine, which works in binary
number system by its default, it is two.

If Vn is a vector space over a field F , and we chose B as the basis,
then every vector vi ∈ Vn is formally written as Bfi where fi ∈ Fn.

Thus, the vector space is very intimately associated with the underlying
field. For instance, in the aforementioned x-y plane example, <2 denotes
2-dimensional vector space built using the cartesian product of real numbers
taken from the field F = <, and hence we write <2 = <× <.

If we consider an arbitrary vector v ∈ Vn, and two bases B1 and B2, then
the vector’s representations B1f1 and B2f2 respectively. Since it is the same
vector we are referring to, therefore,

B1f1 = B2f2

and hence, for instance,
f1 = B−1

1 B2f2 (31)

arrange them, that counts... Consider the alphabet of life. All life on Earth in its almost
infinite variety of species and individual organisms is made up of just four letters: A, C,
G, and T (the nucleic acids adenine, cytosine, guanine, and thymine), which, arranged in
an endless number of sequences, make up DNA.

6If the map ϕ is not assumed to be a bijection it becomes a homomorphism.
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Notice that the inverse exists since any basis is a l.i. set.
A funny example here could be looking at, say a column of 4 letters in

ascending order (basis B1) and descending order (basis B2):
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



A
M
P
Z

 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



Z
P
M
A


While we have a natural basis, such as the x- and y- axes, that spans every

vector space, most of the time some other basis comes handy in computations
and interpretations, and we need to welcome change. We will next establish
that this is going to happen because each possible basis Bi possesses a certain
characteristic feature, which is in turn is due the fact that the same vector
v appears differently in different bases. We choose different bases depending
on the context, and we may perform a change of basis operation to suit
our requirement.

Since any basis is a square matrix of size n× n, we will next explore the
characterization of square matrices.

1.2 The Characteristic of a Square Matrix

Suppose we take a pair of rows7 of a matrix A:

[ai1 ai2 · · · ain] and
[
a(i+1)1 a(i+1)2 · · · ai(i+1)n

]
where the former row is assumed to have all non-zero elements. We may
notice something interesting here – if anyone of the elements of the (i+ 1)th

row, a(i+1)j = 0 then the two rows may be proven to be linearly independent
of each other, i.e., α1r1 + α2r2 = 0 ↔ α1 = α2 = 0. By rearranging, i.e., by
permuting8, we may bring the zero of the latter row to the leading position,
making a(i+1)1 = 0.

Extending this idea, we realize that all the rows of a diagonal matrix
are necessarily independent, provided none of the diagonal elements is zero,
and it is more practical to replace the diagonal matrix with a triangular
matrix; this does not require any computation, it is by mere inspection. In
other words, given n rows we typically leave the first row untouched and
perform the “scale-and-add” operations on, i.e., linear combinations of, rows

7All the arguments presented here may be made in terms of columns of the matrix as
well.

8what I call item #1, you may call it item #7, someone else may call it item #5 and
so on
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2 to n in such a way that for any kth row (k = 2, 3, · · · , n), all the elements
ak1 · · · ak(k−1) are progressively made zero and check if the pivot akk does not
become zero; elements ak(k+1) · · · akn can be arbitrary. This was intuitively
arrived at in eqn. (3). The following example 4th order matrix illustrates the
idea.

Example 4: Let the storekeeper has 4 items on sale, and the leader of
buyers, let us call her buyer #1, devises the strategy – each buyer #i would
go to the store, pretends that she does not know the others, and buys aij
units of item #j according to the matrix

A =


4 4 3 4
4 3 4 2
3 4 4 5
1 1 1 2


and back home the leader would perform the following scale-and-add opera-
tions:

SA1. r2 = r2 − r1 to make a21 zero,

SA2. r3 = 4 · r3− 3 · r1 to make a31 zero, followed by r3 = r3 + 4 · r2 to make
a32 zero.

SA3. r4 = 4 · r4 − r1 to make a41, a42 zero, followed by r4 = 11 · r4 − r3 to
make a43 zero.

to get

A =


4 4 3 4
4 3 4 2
3 4 4 5
1 1 1 2

 SA1−→


4 4 3 4
0 −1 1 −2
3 4 4 5
1 1 1 2



SA2−→


4 4 3 4
0 −1 1 −2
0 0 11 0
1 1 1 2

 SA3−→


4 4 3 4
0 −1 1 −2
0 0 11 0
0 0 0 44


a triangular matrix eventually, and the prices of the items are uniquely de-
termined by back substitution.

Nevertheless, it is also quite possible that the storekeeper being an intelli-
gent guy senses the idea and plays a small trick – he convinces the first buyer
and sells her an additional unit of item 3; likewise, he sells one less unit of
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item 4 to buyer #3, and declares that item 3 is out of stock for buyer #4;
purposefully, he avoids disturbing the diagonal transactions aii. Needless to
say, the honest storekeeper billed the buyers exactly. Once the team goes
back they find, fallen neatly into the trap, the matrix:

A =


4 4 4 4
4 3 4 2
3 4 4 4
1 1 0 2


does not help them. Why? One should quickly work out and verify that the
last row vanishes in an attempt to make a43 zero. More formally we see the
linear combination∑

αiri = 2 · r1 − r2 − r3 − r4 =
[

0 0 0 0
]

with none of the αi equal to 0.
Thus, the pivots are crucial to the solution: in any case they must not

be removed (altogether) from the matrix if we are heading towards a unique
solution. In fact, the diagonal elements which actually help us establish
linear independence when a triangular form is sought, are more likely to be
vulnerable, during the scale-and-add operations, as suggested in the previous
example. This calls for a sensitivity analysis by asking – is there something
that, when removed (either directly or through the scale-and-add operations)
from all the diagonal elements, makes the rows dependent, and hence the
determinant zero, leading to an explosion of solutions? We rephrase this
question as a meaningful equation:

?∃λ : ∆n = |(A− λI)| = 0 (32)

A straight answer may be obtained if we have the diagonal (or triangular)
matrix in our mind, in which case we get the following polynomial equation

∆n = (a11 − λ)M11

= (a11 − λ) (a22 − λ)M22

...

= Πn
i=1 (aii − λ) = 0 (33)

Thus, it is not just one, but n possible complex scalars, anyone of them when
subtracted from all the diagonal elements would render the rows dependent.
Here Mii are called the principal minors9.

9These are cofactors as well.
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In any case - whether the square matrix is arbitrary, or triangular, or
simply diagonal, the outcome is:

χA = λn − γn−1λ
n−1 + γn−2λ

n−2 + · · ·+ (−1)nγ0 = 0 (34)

called the characteristic equation. Assuming that the matrices of our in-
terest are real, i.e., the rows/columns of the matrices belong to the vector
space <n and hence the matrices belong to <n×n, the coefficients γi of the
polynomial would be all real, and hence the n roots λi, called by various
names – characteristic values, proper values, or eigenvalues10 – are, in gen-
eral, complex numbers. Let us quickly observe that the vectors over the field
F = R are n-tuples <n, followed by the matrices belonging to <n×n; even the
determinant is a map <n×n → <, but not all results of composite operations
need to belong the same field. Hence, we do consider extended fields, for
instance the set of complex numbers C in this case, which include the real
numbers; we call C as the algebraic closure of the real field <. Thus, the
set of eigenvalues is the characteristic of a square matrix in the sense that it
contains important information about the nature of the matrix.

Looking at the eigenvalues from this perspective, they are the n critical
values the removal of any one of which from all the diagonal elements may
not permit the matrix A to perform its intended transformative operation,
here the change of basis. And, that must be the reason behind choosing the
German word. In a general matrix, unlike a diagonoal or triangular one, no
eigenvalue is explicitly visible and hence it is latent and needs to be extracted
as a root of the characteristic polynomial. Lastly, we later on witness that
any function of the square matrix A depends on the eigenvalues rather than
on the elements of the matrix, and in that sense the word characteristic
appears to be more appropriate. Understanding this way, what else could be
the mechanism, other than setting |A−λI| = 0, to bring out the eigenvalues?

Example 5: Let

A =

[
0 1
−2 3

]
∈ <2×2

The characteristic equation and the eigenvalues are

λ2 − 3λ+ 2 : λ1,2 = 1, 2

Example 6: Let

A =

[
3 0
4 −1

]
∈ <2×2

10Almost every combination of the adjectives proper, latent, characteristic, eigen and
secular, with the nouns root, number and value, has been used in the literature for what
we call a proper value – Paul R. Halmos [9, p. 102].
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The characteristic equation and the eigenvalues are

λ2 − 2λ− 3 : λ1,2 = {−1, 3}

Since the characteristic polynomial χA(λ) is the determinant of A − λI, it
readily follows that

|A| = χA(0) = (−1)nγ0

i.e., the determinant of any matrix is the product of its eigenvalues. There-
fore, the rows are all independent if none of the eigenvalues is zero, and this
leads to another interesting connection – the rank of any square matrix, e.g.,
basis of a n-dimensional space, is the number of non-zero eigenvalues. While
it is readily visible in the case of diagonal and triangular matrices, it is a
fact that the rank of A − λiI looses its rank depending on the geometric
multiplicity of the eigenvalues; for instance, the identity matrix (the natu-
ral/standard basis) has λ = 1 repeated n times and the rank of A− λI = 0.
In general, if the rank of a matrix whose columns are drawn from a vector
space of dimension n, is n− c, we call c as the nullity of the matrix, and we
have one of the fundamental theorems, the rank theorem: rank + nullity =
dimension n. It is indeed a matter of serious concern when the characteristic
polynomial as multiple roots, but in the interest of the big picture in this
brief appendix we do not bring it here.

Furthermore, i is easy to verify that, if λi are the eigenvalues of A, the
reciprocals 1/λi would be the eigenvalues of A−1.

There is much more to the eigenvalues. However, we first need to un-
derstand a little more formally about the transformations, either among the
vectors of the same space (e.g., change of basis) or between vectors of two
different spaces (e.g., ). Soon after this we resume our discussion on eigen-
values.

1.3 Linear Transformations

Going by our theme puzzle, we have on one side a vector of bills paid by the
students, and on the other side is a vector of unit price of each of the n items.
Indeed, what we presumed and further developed is that these two vectors,
and for that matter any pair of vectors one from each category, are linearly
related, i.e., every component of one of the vectors is a linear combination of
the all the components of the other vector. In other words, we transformed
one vector into another.

More formally, if there are two spaces Um and Vn, a linear transformation
L is a map

L : u ∈ Um → v ∈ Vn (35)
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satisfying the following properties:

L(0̄) = 0̄ and L

(∑
i

αiui

)
=
∑
i

αiL (ui) (36)

It is not difficult to see that L readily takes the form of a matrix of size n×m,
pre-multiplying the vector u ∈ Um to give us v ∈ Vn. Typically, this matrix
is called as the matrix of L with respect to the bases of U and V . As we
elaborate more in the following pages, different choices of the bases lead to
different matrices.

Example 7: A polynomial of degree n may be represented as a vector in
the the standard basis as

pn(x) = In


pn
pn−1

...
p0

 ∈ Pn+1

where the columns of the basis In, from left to right, indicate xn, xn−1, · · · , x0

and the vector consists of all the coefficients pi in the decreasing order of
power of xi. Thus, this is a (n+ 1)-dimensional space. By differentiating the
polynomial (w.r.t.x) once, we define a linear transformation from Pn+1 to
Pn.

With reference to the properties of linear transfomation, we have the
following mportant definitions.

Definition: Sub-space

Let Vn(+, ·) be a vector space over F and let W = {w1, w2, · · · } be a
nonempty subset of V . Then,

W(+, ·) is a subspace of V ⇔ ∀αi ∈ F
∑
i

αiwi ∈ W (37)

Remarks:

1. If W is a subspace of V , then W contains the zero vector 0̄ of V .

2. The dimension ofW ≤ n. V is clearly a subspace of itself. The set {0̄},
consisting of only the zero vector, is also a subspace of V , called the
zero subspace. These are called the trivial subspaces of V ; all others
are generally called as proper subspaces.
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Definition: Kernel

The kernel of a linear transformation is

ker(L) = {u ∈ U : L(u) = 0̄} (38)

Notice that if L is a matrix of size m × n, for instance with m < n, then
there would be non-trivial solutions vi, in addition to the trivial solution 0̄,
that satisfy L(v) = 0̄

Definition: Image

The image of a linear transformation is

im(L) = {v ∈ V : L(u) = v for some u ∈ U} (39)

Example 8: Let us consider U3 and V2 over the field < with

L =

[
1 2 3
4 5 9

]
then

ker(L) = span of the vectors [1 1 − 1]T ∈ U3

i.e., ker(L) is a sub-space of U – only those vectors that are scaled versions
of [1 1 − 1]T , and hence its dimension is 1.

For imL, we see that the span of L (u ∈ U3) is a subspace of V of dimen-
sion 2 – the basis of these image vectors is restricted by the linear combi-
nations induced by L and hence not all vectors of V are generated by this
transformation for any u ∈ U .

Thus, it is customary to say that the set L of linear transformations is a
vector space of dimension m× n over the field F = FU ∪ FV . Moreover,

dim (ker(L)) + dim (im(L)) = dim (Um) (40)

This is the formal version of the aforementioned rank theorem nullity +
rank = dimension.

Earlier we mentioned that the matrix L is with respect to the bases of
U and V . If we study changes of basis in the respective spaces, we will reap
several benefits. We will basically ask: What happens to the matrix L of the
transformation if we make other choices of bases. If BU and BV are the new
bases such that

BUu′ = u and BV v′ = v
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where u and v are originally seen from their standard basis, then a linear
transformation between the two spaces results in

BV v′ = LBUu′

If L′ is the matrix with respect to the new bases, then

L
′ = B−1

V LBU such that v′ = L
′u′ (41)

In fact, we may interpret B−1
V LBU as the matrix obtained from L by a

succession of row and column operations, e.g., leading to a matrix that has
a lot of zeros, like a diagonal matrix, so that multiplication by such matrices
is easy to describe. Therefore, it is but natural to hunt for bases such that
L
′ becomes significantly simplified. We will provide an example after a few

lines. One would also, now, observe the power of working in structures like
vector spaces without fixed bases.

Next, if a linear transformation maps a vector in V to itself, i.e., L : V →
V , then it is referred to as a linear operator on V . Obviously, in the matrix
representation, it is a square matrix. And, as a pre-multiplying matrix, the
basis matrix is a linear operator on the space Fn of column vectors. Having
learnt about transformations between two arbitrary spaces, we now quickly
adapt the same to linear operators. We need only one basis B for V , and use
it in place of both the bases BU and BV . Thus, if

v2 = Lv1, v1, v2 ∈ Vn

and we choose a new basis B, with respect to this new basis the operator
becomes

L
′ = B−1

LB (42)

What we technically call as change of basis, is a shift in our point-of-view
to look at the unknowns differently, but plausibly in a more computation-
friendly way.

In general, we say that a square matrix A is similar to A′ if A′ = M−1AM
for some non-singular M . Once again, it is natural to hunt for a similar ma-
trix which is particularly simple. However, here we face certain restrictions
since we have only one basis, and therefore one matrix to work with. Never-
theless we proceed in the following manner.

Recall that subtracting an eigenvalue λi from the diagonal elements makes
the matrix rank deficient. In other words, looking at the rows, there exists a
set of scalars in F such that the linear combination of all the n rows is zero,
and we may quickly observe that for each eigenvalue λi,

∃li 6= 0 ∈ Cn : li
T [A− λiI] = 0 i = 1, 2, · · · , n (43)
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Such vectors, n in number and independent of each other, are called left
eigenvectors corresponding to the eigenvalues. Basically, each li is
a stack of all those scalars such that the linear combination of the rows of
A− λiI is zero.

Likewise, we may also observe that for each eigenvalue λi

∃ri 6= 0 ∈ Cn : [A− λiI] ri = 0 i = 1, 2, · · · , n (44)

or, equivalently
Ari = λiri

Each of these n vectors ri are called right eigenvectors, conventionally just
the eigenvectors corresponding to the eigenvalues.

Example 6 contd...: For

A =

[
3 0
4 −1

]
∈ <2×2

The eigenvalues of this lower triangular matrix were found to be

λ1,2 = {−1, 3} along the diagonal

Corresponding to the eigenvalue λ1 = −1,

A− λ1I =

[
4 0
4 0

]
A quick observation again – rank of A− λ1I is 1. And, we may compute

l1 =

[
1
−1

]
and r1 =

[
0
1

]
so that

l1
TA = λ1l1

T and Ar1 = λ1r1

Likewise, for λ2 = 3

l2 =

[
1
0

]
and r2 =

[
1
1

]
are the left- and right-eigenvectors respectively.

In the general n×n case, if we compute all the n right eigenvectors, and if
we are lucky to see the set to be l.i., we may proceed to compose the matrix:

M = [r1 : r2 : · · · : rn] (45)
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known as the eigenbasis of A. Consequently, we may write Ari = λiri as

AM = [λ1r1 : λ2r2 : · · · : λnrn]

(46)

= M


λ1 0 · · · 0
0 λ2 · · · 0
...

. . .

0 0 · · · λn


(47)

= MΛ (48)

where Λ denotes the diagonal matrix as above. Rearranging terms, we have

M−1AM = Λ (49)

i.e., any square matrix, particularly the one having distinct eigenvalues, is
similar to a diagonal matrix; notice that the diagonal matrix is the simplest
one with a lot of zeros.

Thus, if A is a linear operator and v1 and v2 are now seen from the basis
B = M−1, then the operation is most simple as it amounts to scaling each of
the components of Bv1 by λi to get the corresponding component of Bv2.

While figuring out the independent vectors ri and composing a non-
singular M are indeed possible, it is not so easy in practice since inverting
a matrix tends to be prohibitively computationally expensive – it needs n!
multiplications to compute the determinant and n × n! multiplications to
compute the n2 cofactors resulting in a whopping (n + 1)! multiplications,
using Laplace’s expansion. Therefore, orthonomal matrices computed using,
for instance, successive QR-decompositions11 on A, are preferred, and the
process involves a sequence of updates starting from A.

Another noteworthy point here is that given a matrix A, one may at-
tempt and work out to verify that pre-multiplying A by a matrix amounts
to performing row operations. One may also verify that post-multiplying A
by the inverse (of the earlier matrix) amounts to performing the dual set of
operations on the columns. As a consequence, all the matrices A,A1 · · ·Ai,
and the diagonal matrix Λ (if we are indeed able to arrive at), have identical
set of eigenvalues λi. This is very easy to establish – if two matrices A1 and
A2 are similar in the sense that

if M−1A1M = A2

11More about this in a later section.
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for some non-singular M , then

χA1 = 0 = | (A1 − λI) |
= |

(
MA2M

−1 − λMIM−1
)
|

= |M (A2 − λI)M−1|
⇒ | (A2 − λI) | = 0

= χA2

In other words, similar matrices have identical characteristic equations, i.e.,
same set of eigenvalues (and hence the same rank).

The computation of eigenvectors corresponding to the eigenvalues such
that

Ari = λiri, i = 1, 2, · · · , n

is not a trivial task; in fact, in any classroom a very small number of students
would be able to solve the above equation for n = 3. While ri = 0 is
the trivial solution, we need at least one non-trivial solution. By and large
the difficulty arises because we attempt to solve a rank-deficit system of
equations, and interestingly, every student is baffled at the same equation
repeated twice or more. In addition to having a routine, an insight can be
obtained by looking at the upper triangular matrix, with the eigenvalues
along the principal diagonal:

A =


λ1 a12 · · · a1n

0 λ2 a2n
...

. . .

0 0 · · · λn


With λ = λ1, the first column of A−λI vanishes and hence the only possible
non-trivial eigenvector is

r′1 =


1
0
...
0


Extending this idea to the rest of the eigenvalues, we get

M ′ =


1 ∗ · · · ∗
0 1 · · · ∗
...

. . .
...

0 0 · · · 1
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where ∗ denotes a possibly non-zero element making M upper triangular as
well.

Thus, computationally we fix r′ii = 1 and solve linear equations of size
n− 1 for each eigenvalue λi.

Once this set of eigenvectors is obtained, given the similarity, the required
eigenvectors of A may be obtained by the transformation:

ri = Qr′i, i = 1, 2, · · · , n

Let us now go back to our group of buyers and look at the original linear
system of equations Ax = b from the above perspective; for the sake of
convenience we assume A has full rank, having successfully escaped from the
shopkeeper’s tricks. An important remark needs to be made here. While
the strategic shopping was going on, back home the leader had been busily
scaling, adding, and rearranging the rows of the matrix A, as well as those
of the column b – essentially pre-multiplying the matrix with another – to
arrive at an upper triangular matrix that has no zeros along the diagonal;
columns were consciously left untouched. In such a case, the eigenvalues of
the triangular matrix could be different from those of A. The goal has always
been to obtain the unique solution x of the linear system. More details on
this line of argument may be found in a later section on QR-decomposition.

Moreover, if the group made column- as well as row-operations on A such
that M−1AM = A′ is upper-triangular, it is equivalent to first transforming
the unknown vector x to another vector Mz and the vector b to Mb′ on the
right hand side. Effectively, we get

A′z = b′

with identical set of eigenvalues for A and A′. Thus by change of basis,
we pretty well know that solving the linear system by back substitution is
straight - O

(
n2
)

multiplications; once we obtain z by back substitution, we
transform back to obtain x = Tz in another O

(
n2
)

multiplications. Thus,
including the cost of computing the triangular matrix, the total number of
multiplications and additions of products (more generally, the total number
of floating point operations or flops) is O

(
n3
)
, which is extremely small

compared with (n + 1)! multiplications needed to compute the solution via
matrix inversion. Moreover, when A has full rank, none of the diagonal
elements of A′ is a zero, i.e., A′ is also a bijection and hence a unique z
is guaranteed. To eulogize the similarity transformation once more, we will
briefly look at the matrix exponential eA that plays a key role in the solution
of the state equation of continuous-time systems. This function of a square
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matrix can be defined as a natural extension of its scalar counterpart –

eA = I + A+
A2

2!
+
A3

3!
+ · · ·+ Ai

i!
· · ·

Keeping aside for the time being that this is an infinite series, one finds that
this function basically depends on the eigenvalues of A directly. For instance,
one may have a flash-thought:

M−1eAM = I +M−1AM + · · ·
= I + Λ + · · ·
= eM

−1AM

And, after a sumptous meal the desserts are

1. The determinant is the product of all eigenvalues, with rank understood
as the number of non-zero eigenvalues.

2. Two matrices connected via A′ = M−1AM are said to be similar ⇔
they possess the same set of eigenvalues, and hence the same rank.

(a) If A and A′ are similar, their trace, basically the sum of diagonal
elements but turns out to be the sum of eigenvalues, is also the
same; however, the converse is not always true.

The matrices A and A′ thus have a common means of formation through
the eigenvalues, and their similarity under the eyepiece of eigenbasis T is
uncanny. Every square matrix is a symphony with the spectrum of its eigen-
values as the underlying set of chords. To this end we will next see one of
the most beautiful theorems in linear algebra.

1.4 The Cayley-Hamilton Theorem

Let us have a matrix A, and a transformation M such that M−1AM = Λ.
For each of the n eigenvalues we have a characteristic equation:

λni − γn−1λ
n−1
i + γn−2λ

n−2
i + · · ·+ (−1)nγ0 = 0

These n equations can be packed into a matrix equation

Λn − γn−1Λn−1 + γn−2Λn−2 + · · ·+ (−1)nγ0I = [0] (50)

where [0] is the zero matrix. Using M ,(
MΛM−1

)n − γn−1

(
MΛM−1

)n−1
+ · · ·+ (−1)nγ0MIM−1 = M [0]M−1
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which is none other than

An − γn−1A
n−1 + γn−2A

n−2 + · · ·+ (−1)nγ0I = [0] (51)

This is the famous theorem stated as

Every square matrix satisfies its own characteristic equation.

Just for instance, we may compute

A−1 = − 1

(−1)nγ0

(
An−1 − γn−1A

n−2 + γn−2A
n−3 + · · ·+ γ1I

)
For that matter any function of a square matrix may be reasonably well
computed as a linear combination of positive powers of the matrix, using
this theorem.

Example 9: Let

A =

[
3 0
4 1

]
The characteristic equation is

λ2 − 4λ+ 3 = 0

and with little effort one can readily verify that

A2 − 4A+ 3I = [0]

from which

A−1 = −1

3
(A− 4I) = −1

3

([
(3− 4) (0− 0)
(4− 0) (1− 4)

])
=

1

3

[
1 0
−4 3

]

The Cayley-Hamilton theorem actually helps make infinite series such as
eA finite and allow an algorithmic computation.

We next look at a very important concept that indicates the size, in some
sense, of a vector or a matrix in the space.

1.5 Vector and Matrix Norms

Here we will just provide the basic idea and encourage readers to get more
details from the references. If a real number, a scalar, has an absolute value
why not a vector or a matrix? Put it simply, is there a way for our buying
team to get an idea of how expensive is the store?
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A vector more generally is a mathematical object, say a matrix or a
polynomial, and often we need to have a feel of how big or small is that in
some sense of magnitude – how far away is the tip of the vector (visualized as
in physics as an arrow in a geometric space of coordinates) from the origin?
For instance a polynomial like x3 + 3x2 + 4x + 7 could be a generalization
of, say 1347 in decimal system where x = 10; the question is to assess how
big is such a number, for instance like the distance of |x| from zero on the
real line. As a generalization, we abstract this 4-digit number as a vector in
a four-dimensional space and assign the coordinates 1–3–4–7. We may then
use Pythogorean theorem and find the distance between this point and the
origin as

√
12 + 32 + 42 + 72.

Thus, in general we define the Euclidean Norm, or more conveniently
the 2-norm of a vector x = [x1 x2 · · · xn]T as

‖x‖2
∆
=

√√√√ n∑
i=1

x2
i =
√
x∗x (52)

where we assume x ∈ C and x∗ is the complex-conjugate transpose of x. This
expression is pretty close to that of statistical variance of a zero-mean data.
And, this norm is frequently seen in optimal control problems.

More generally, we define a p−norm as follows.

displaystyle‖x‖p
∆
=

(
n∑

i=1

xpi

) 1
p

(53)

Using the notion of the norm of a vector, we may define the norm of a
matrix as follows; after all, a matrix can also be thought of a generalized
number. A rather straight way to judge the size of a matrix is

‖A‖ ∆
= ‖Ax‖ where x is any arbitrary vector : ‖x‖ = 1 (54)

This is the size of the transformed vector, implicitly giving amplification
factor of the matrix. It is interesting to see that if it is 2-norm of x, then

‖A‖2 = max
‖x‖2=1

‖Ax‖2 =
√
σmax (55)

where σmax is the largest eigenvalue of A∗A (also known as the singular
value of A), where A∗ is the complex-conjugate-transpose of A. As a quick
extension one might also think of

‖A−1‖2 =
1

max‖x‖2=1 ‖Ax‖2

=
1

√
σmin

(56)
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where σmin is the smallest sigular value of A. The spread of these singular
values is usually considered in the singular value decomposition discussed in
the next section.
We now define a vector of all 1s:

1 = [1 1 · · · 1]T (57)

using which we define two different norms that are practically more popular.

‖A‖ ∆
= largest component of A1 or 1TA (58)

The first one gives the largest among the sums of elements along the rows
and the second one gives the largest column sum. At times, we define a
matrix norm as:

‖A‖ = max
{
A1, 1TA

}
(59)

Earlier we mentioned about extended fields, and to accommodate operations
on eigenvalues we need to have C 3 < as the underlying field for many
practical matrices. Accordingly, a useful norm known as Frobenius norm is
given by

‖A‖2
F

∆
=
∑
i,j

|aij|2 = trace (A∗A) (60)

In general, design solutions resulting as matrices are not unique and phys-
ical considerations and constraints, such as actuator contraints or bandwidth
constraints, are likely to demand a restriction on the size of the elements of
these matrices, and these matrix norms come handy.

Any of these (vector as well as matrix) norms need to satisfy the following
properties, for obvious reasons as well as an extension from the absolute value
of scalars.

1. ‖x‖ 6< 0, ‖x‖ = 0⇔ x = 0

2. ‖αx‖ = |α|‖x‖

3. ‖x + y‖ ≤ ‖x‖ + ‖y‖, the classic triangle inequality; we can also have
the backward triangle inequality, ‖x‖ − ‖y‖ ≤ ‖x− y‖.

1.6 The QR Decomposition

Let us consider a square matrix A of n columns, a1, · · · , an, treated as
vectors in the standard basis e1, · · · , en. We wish to express each of these
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vectors in another orthonormal basis, q1, · · · , qn. Each column aj may then
be expressed as the following linear combination:

aj =
n∑

i=1

rijqi (61)

If the matrix Q is the composition of the new orthonormal basis, then

A = Q


r11 r12 · · · r1n

r21 r22 · · · r2n
...

. . .

rn1 · · · rnn

 (62)

where all the scalars rij make up the matrix R.
Now the problem is twofold: to construct the new orthonormal basis

q1, · · · , qn as well as compute the scalars rij, given the vectors a1, · · · , an.
At first, this would appear formidable. But, two simple and clever tricks
would open the path. The first trick is to consider rij = 0 ∀i > j , making
the R matrix an upper triangular one. This gives us the following column-
wise progression:

a1 = r11q1

a2 = r12q1 + r22q2

a3 = r13q1 + r23q2 + r33q3

...

an =
n∑

i=1

rinqi (63)

Noting that Q−1 = QT , we may rewrite the above equation as

QTA = R

so that
r11 =< q1, a1 >= q1

Ta1

to begin with, and in general,

rij =< qi, aj > (64)

Apparently, a way out to compute the coefficients, but the vectors appear to
be still elusive. The mystery unravels beautifully with the master stroke:

displaystyleChoose q1 =
1

‖a1‖
a1 (65)
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Easily, for A ∈ <3×3 the algorithm follows:

r12 = < q1, a2 >

r22q2 = a2 − r12q1

q2 =
1

r22 = ‖a2 − r12q1‖
r22q2

r13 = < q1, a3 >

r23 = < q2, a3 >

r33q3 = (a3 − r13q1)− r23q2

q3 =
r33q3

r33 = ‖ (a3 − r13q1)− r23q2‖
(66)

Note that r13 could have been computed alongside r12, and the vector a3 could
have been partially updated to a3 − r13q1, and later completely updated to
r33q3; the parenthesis in the last couple of lines elicit us write the following
tiny code:

for i = 1 : n {
rii = ‖ai‖

qi =
1

rii
· aii

for j = (i+ 1) : n {
rij = qT

i aj

aj = aj − rijqi

}
}

Example 10: Let

A =

 2 2 1
2 1 2
1 2 2


i = 1 : r11 = ‖a1‖ = 3

q1 =
1

3

 2
2
1
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j = 2 : r12 = < q1, a2 >=
8

3

a2 = r22q2 = a2 − r12q1 =
1

9

 2
−7
10


j = 3 : r13 = < q1, a3 >=

8

3

a3 = (a3 − r13q1) =
1

9

 −7
2

10


i = 2 : r22 = ‖a2 − r12q1‖ =

√
153

9

q2 =
1

r22

r22q2 =
1√
153

 2
−7
10


j = 3 : r23 = < q2, a3 >=

8√
153

a3 = r33q3 = (a3 − r13q1)− r23q2 =
1

153

 −135
90
90


i = 3 : r33 = ‖ (a3 − r13q1)− r23q2‖ =

√
34425

153

q3 =
1

r33

r33q3 =
1√

34425

 −135
90
90


Thus,

A =

Q︷ ︸︸ ︷ 0.6667 0.1617 −0.7276
0.6667 −0.5659 0.4851
0.3333 0.8085 0.4851

 3.0000 2.6667 2.6667
0 1.3744 0.6468
0 0 1.2127


︸ ︷︷ ︸

R

As was mentioned earlier in 1.2 in veiw of change of basis and comput-
ing eigenvectors, in practice we prefer orthonormal matrices to avoid the
expensive computation of matrix inverse, and use transposition instead.

Given A = Q1R to begin with, we first compute A1 = RQ1. Since
R = QT

1A, A1 becomes similar to A. Consequently, we have the following
iterations.

Let A1 = RQ = QT
1AQ1
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followed by A2 = QT
2A1Q2

...

Ai = QT
i Ai−1Qi

= (Q1Q2 · · ·Qi)
T A (Q1Q2 · · ·Qi) (67)

Example 11: Let

A =

[
0 1
−2 −3

]
We first apply the QR algorithm to obtain

Q1 =

[
0 1
−1 0

]
and R =

[
2 3
0 1

]
Consequently we get

A1 = RQ1 =

[
−3 2
−1 0

]
which is similar to A. If we repeat this procedure we get the following:

A2 =

[
−2.4000 2.8000
−0.2000 −0.6000

]
, A3 =

[
−2.1724 2.9310
−0.0690 −0.8276

]
,

A4 =

[
−2.0803 2.9708
−0.0292 −0.9197

]
, A5 =

[
−2.0388 2.9865
−0.0135 −0.9612

]
,

A6 =

[
−2.0191 2.9935
−0.0065 −0.9809

]
, A7 =

[
−2.0095 2.9968
−0.0032 −0.9905

]
,

A8 =

[
−2.0047 2.9984
−0.0016 −0.9953

]
, A9 =

[
−2.0023 2.9992
−0.0008 −0.9977

]
,

A10 =

[
−2.0012 2.9996
−0.0004 −0.9988

]
, A11 =

[
−2.0006 2.9998
−0.0002 −0.9994

]
,

A12 =

[
−2.0003 2.9999
−0.0001 −0.9997

]
, A13 =

[
−2.0000 3.0000

0.0000 −1.0000

]
Thus we get A13, an upper triangular matrix, that is similar to A. Notice
that the eigenvalues of A are the diagonal entries of A13.

It may be observed that the inverse of any Qi is readily obtained by simply
transposing it. Nevertheless, arriving at a diagonal matrix Λ is far away in
most cases and we practically settle with some Ai that is upper-triangular
which typically takes O

(
n3
)

(i.e., not exceeding n3) multiplications. There
are several other issues, e.g., faster convergence, accuracy etc., which led to
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the development of variants of the algorithm. Interested reader may find
those topics in the references.

The resulting upper triangular matrix Ai is similar to the original matrix
A, and hence has the same eigenvalues, now sitting along the diagonal. Thus,
without solving the characteristic polynomial we will be able to compute the
eigenvalues spending only about n3 saxpy floating point operations.

We will next see how this idea of decomposition can be extended to rect-
angular matrices.

1.7 Singular Value Decomposition

Let us now look at a matrix A ∈ <m×n, whose rank is m (< n). There
are plenty of applications where the linear transformations of this nature
are necessary. Nevertheless, we proceed in the following manner building up
creatively from our earlier experience.

1. We will first obtain the product ATA ∈ <n×n, a symmetric matrix. If
we perform a similarity transformation on this matrix, we first expect
the diagonal matrix∑

= diag (σ1, σ2, · · · , σm, σm+1 = 0, · · · , σn = 0) (68)

where we use the symbol σ for the eigenvalues of ATA, which are better
known as the singular values of A. Since the rank of A is m < n,
the singular values σm+1, · · · , σn are zeros. It is standard practice to
make this diagonal matrix with entries in the descending order, i.e.,
σ1 ≥ σ2 ≥ · · ·σm > 0 = σm+1 = · · · = σn.

For convenience, we consider the existence of an orthonormal matrix
Q such that

QT
(
ATA

)
Q =

∑
= diag (σ1, σ2, · · · , σn) (69)

2. Left-multiplying on both sides by AQ, we get the following

(AQ) ·QTATAQ = AQ
∑

since Q is orthonormal we open up the paranthesis and initially obtain(
AAT

)
AQ = AQ

∑
from which we readily obtain, by post-multiplying on both sides by QT

A =
(
AAT

)−1
AQ

∑
QT

∆
= U

∑
V T (70)
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where V is the original Q itself, and U is obtained by pre-multiplying

Q with
(
AAT

)−1
A. One should readily see that AAT has full rank m,

and hence it is invertible.

This is the basic idea of a singular value decomposition, popularly known as
SVD.

If matrices are seen as generalizations of numbers, then we need the notion
of the sign of a matrix and we briefly introduce the concept in the following
section.

1.8 Sign Definite Matrices

Quite often, on a large scale, it becomes imperative to study quadratic poly-
nomials of the form

P(x) =
n∑

i,j=1

pijxixj = p11x
2
1 + · · ·+pnnx2

n+p12x1x2 + · · ·+pn−1,nxn−1xn (71)

where x = [x1 · · · xn]T is the vector of the variables xi. Given x, P(x)
evaluates to a scalar, typically a real number.

A general interpretion given to such polynomials is energy of a system;
one can also see it, geometrically, as distance. Since energy or distance
is a scalar that can never be negative irrespective of the sign of xi, it is
instructive to study the coefficients pij. In particular, it is easy to say that
it is necessary to have pii ≥ 0 as x2

i is always non-negative, but how about
the other coefficients?

We may, with some effort, rewrite the quadratic polynomial as

P = xTPx

= xT


∑n

j=1 p1jxj
...∑

j pnjxj


=

n∑
i≤j=1

pijxixj (72)

where the matrix P may be observed to be a symmetric matrix; even if it
were not symmetric, it does not matter as we can always get a symmetric

matrix S =
1

2

(
P T + P

)
, which implies xTSx = xTPx. Thus no loss of

generality is obtained by assuming P is symmetric.
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Suppose we are able to get a vector z and an orthonormal matrix M such
that x = Mz, and such that MTPM is diagonal then

P(z) = zTMTPMz = λ1z
2
1 + λ2z

2
2 + · · ·+ λnz

2
n (73)

containing only the square terms, which are obviously non-negative if and
only if λi 6< 0. Ergo, the polynomial P(z) evaluates to a positive real number
for any z 6= 0 if and only if all the eigenvalues λi of the symmetric matrix
P are strictly positive. Extending this observation, we have the following
five-fold classification of symmetric matrices

known as eigenvalues

positive definite λi > 0
positive semi-definite λi ≥ 0
negative definite λi < 0
negative semi-definite λi ≤ 0
indefinite some λi ≥ 0

and others < 0

There is an interesting way, called Sylvester’s criterion, which helps us
identify the class of a given symmetric matrix. We will have a quick look at
this criterion for a negative definite matrix. Since all the eigenvalues must
be strictly negative,

−λ1 > 0, λ1λ2 > 0, . . . , (−1)kλ1λ2 · · ·λk > 0, . . .

and each term may be identified as a part determinant: λ1λ2 · · ·λk is the
determinant of the matrix formed using the first k rows and k columns of P .
One would readily notice that the eigenvalues are progressively covered in
these sub-matrices, appropriately termed as principal minors earlier. Need-
less to say, for a positive definite matrix all the principal minors are strictly
positive.

A couple of observations are in place here. First, like any norm, xTPx =
0⇔ x = 0. However, xTPx = 0 under certain conditions as well; for instance
(x1 + x2)2 = 0 if x2 = −x1(6= 0). Thus, we often classify symmetric matrices
as either positive semi-definite, or negative definite, or indefinite. Secondly,
looking at the variables xi as being statistically available with probabilities
pi, we obtain the covariance matrices as symmetric positive definite matrices
which might be interpreted as squares of weighted 2-norms, i.e.,

xTPx = ‖x‖2
P (74)

We have one last piece to explore before we close this appendix.
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1.9 The Condition Number

The argument we present here, nothing to do with the definitions, is that
we are perturbing the diagonal elements to check how far away the transfor-
mation is from being a bijection. The range of eigenvalues could be small
or large; in the later case, we end up with ill-conditioned systems and such
concepts, which are more meaningful from this perspective - there are eigen-
values close to zero which create troubles in the computation. The condition
number of a matrix is given by

κ(A) = ‖A‖ · ‖A−1‖ (75)

which indicates that κ(A) > 1, but if it is too much bijection of the trans-
formation could be jeopardized. If we imagine a diagonal matrix with eigen-
values in the interval [λmax, λmin],

‖Λ‖ = |λmax|, ‖Λ−1‖ =

∣∣∣∣ 1

λmin

∣∣∣∣ and κ(A) =

∣∣∣∣λmax

λmin

∣∣∣∣ (76)

The implication is that, if we have a wide range of eigenvalues, with one close
to zero and one reasonably large in magnitude, the condition number is going
to be quite large. In the solution to the Ax = b the eigenvalue relatively close
to zero plays spoil sport as finite precision arithmetic is likely to round it off
to zero. We illustrate this in the following example.

Example 12: Let us solve the linear system

A =

[
1 1

0.49 0.51

]
, b =

[
2
1

]
Without any calculation one would get the solution as x = [1 1]T with
‖x‖2 =

√
2. But, if we slightly change b by adding an ε to 2,

x =

[
1 + 25.5ε
1− 24.5ε

]
, ‖x‖2 =

√
2 + 2ε+ 1250.5ε2

The reason is that the eigenvalues of A are

λ1,2 = 1.496636703514598 ≈ 1.50, and 0.013363296485402 ≈ 0.01

significantly far apart from each other, and κ(A) = 125.0020.
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What is Ahead?

With these pages of development, the next question is: “where do we go
now?” For a wholesome development a sequence of right questions is impor-
tant, with hopefully a big picture sketched. This was the chief intention of
this note. Once we identify a vector and its space Vn over an arbitrary field
F , for instance, a continuous real-valued function f on a closed interval I, we
quickly look at αf and hence αf +βg. If we look at objects this way, we find
that there is more structure showcasing extra features which distinguish it
from others. The strength of this kind of an abstract approach lies in the fact
that consequences of the axioms can be applied to many different examples;
one may instantaneously recall that differentiation (or integration), Laplace
transformation, and even computing the expectation of a random variable
follow the suit.

This is the beginning of a formal course on linear algebra and we direct
the reader to the following excellent references.
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